Heat Shock Proteins: Potent Mediators of Inflammation and Immunity
Heat Shock Proteins: Potent Mediators of Inflammation and Immunity
HEAT SHOCK PROTEINS

Volume 1

Series Editors:

A. A. A. Asea
Effie and Wofford Cain Centennial Endowed Chair in Clinical Pathology,
Chief, Division of Investigative Pathology, Scott & White Memorial Hospital and Clinic
and The Texas A&M University System Health Science Center College of Medicine

S. K. Calderwood
Division of Molecular and Cellular Radiation Oncology,
Beth Israel Deaconess Medical Center and Harvard Medical School
Heat Shock Proteins: Potent Mediators of Inflammation and Immunity

Edited by

Alexzander A. A. Asea
Effie and Wofford Cain Centennial Endowed Chair in Clinical Pathology,
Chief, Division of Investigative Pathology, Scott & White Memorial Hospital and Clinic
and The Texas A&M University System Health Science Center College of Medicine
Temple, TX, U.S.A.

and

Antonio De Maio
Department of Surgery, School of Medicine,
University of California, San Diego, CA, U.S.A.
This book is dedicated to our children Ana-Cristina, Alexzander Jr., Edwina and Vanessa
TABLE OF CONTENTS

Preface xi

Part I Mechanisms of Heat Shock Protein Release

 - Alexzander A.A. Asea
 - 3

2. HSP70 Peptide Acting as a Danger Signal for Natural Killer (NK) Cells
 - Gabriele Multhoff
 - 21

 - Graeme I. Lancaster and Mark A. Febbraio
 - 31

 - John H.H. Williams and Claire Hunter-Lavin
 - 39

Part II Heat Shock Protein Binding and Receptor-Mediated Signaling

5. Macrophages and the Stress Response
 - Virginia L. Vega and Antonio De Maio
 - 61

6. Heat Shock Proteins and Scavenger Receptors
 - Yves Delneste, Sébastien Jaillon and Pascale Jeannin
 - 75

7. The Inside Story: Anti-Inflammatory Roles of HSF1 and Heat Shock Proteins
 - Stuart K. Calderwood, Xianzhong Xiao and Yue Xie
 - 95

8. Interaction of Heat Shock Protein 60 with Innate Immune Cells
 - Christiane Habich and Volker Burkart
 - 115
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>HSP-APC Interactions: Initiation of Immune Responses</td>
<td>Robert J. Binder and Pramod K. Srivastava</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Extracellular Functions for an Intracellular Protein: GRP94/GP96</td>
<td>Deanna Carrick Crossman and Christopher V. Nicchitta</td>
<td>147</td>
</tr>
<tr>
<td>11</td>
<td>HSP-Induced Stimulation of Immune Responses</td>
<td>Thomas Lehner, Yufei Wang, Trevor Whittall, Lesley A. Bergmeier, Kaboutar Babaahmady and Charles Kelly</td>
<td>159</td>
</tr>
<tr>
<td>13</td>
<td>Hsp70 Family Members, Danger Signals and Autoimmunity</td>
<td>Douglas G. Millar and Pamela S. Ohashi</td>
<td>189</td>
</tr>
<tr>
<td>14</td>
<td>The Immune Response Under Stress: Class I HLA Presentation of host-derived peptides</td>
<td>Angela Wahl, Oriana Hawkins, Curtis McMurtrey, Heather Hickman-Miller, Jon Weidanz, and William Hildebrand</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>Extracellular HSP 72: A Double-edged Sword for Host Defense</td>
<td>Monika Fleshner, John D. Johnson and Joshua Friedman</td>
<td>235</td>
</tr>
<tr>
<td>16</td>
<td>HSP60: A Pleiotropic Immune Signal</td>
<td>Alexandra Zanin-Zhorov and Irun R. Cohen</td>
<td>265</td>
</tr>
<tr>
<td>17</td>
<td>Impact of HSP-chaperoned Peptides on the MHC Class II-dependent</td>
<td>Markus Haug, Günther E. Dannecker and Ursula Holzer</td>
<td>275</td>
</tr>
<tr>
<td>18</td>
<td>Heat Shock Proteins are Targets for T Cell Regulation: How Microbial HSP Induce IL10 Producing Anti-inflammatory T Cells</td>
<td>Willem van Eden</td>
<td>289</td>
</tr>
</tbody>
</table>
Table of contents

19. The Pro- and Anti-Inflammatory Properties of the Stress Protein GP96
 A. Graham Pockley and Munitta Muthana 309

20. Anti-Tumor Response and Heat Shock Proteins (HSP): A Friend or Foe Relationship?
 Susana Fiorentino, Alfonso Barreto, Diana Castañeda and Claudia Cifuentes 321

21. Heat Shock Proteins and the Resolution of Inflammation by Lymphocytes
 Mark I. Hirsh and Wolfgang G. Junger 337

Index 355
PREFACE

From their original description as primarily intracellular molecular chaperones involved in cell survival and protection against potentially harmful stimuli, heat shock proteins (HSP) have now been shown to be exit cells and exert profound effects on the host’s response to several human diseases as dissimilar as cancer, cardiovascular disease, aging and autoimmunity, and in response to previously unknown stressors like physical exercise and psychological stress including predator fear, confinement and social exclusion. This book reviews the contemporary knowledge on the role of heat shock proteins as mediators of inflammation and immunity. Using an integrative approach to understanding heat shock protein immunobiology, the contributors provide a synopsis of novel mechanisms by which HSP are released from cells, specific binding and resultant receptor-mediated signaling, the process of antigen processing and presentation and finally how HSP stimulate immune responses.

Section I reviews recently discovered mechanisms by which HSP gain access to the extracellular milieu. Classical and unique stressors that stimulate HSP release, as well as pathways by which HSP are delivered to the extracellular milieu are discussed.

Following release of HSP from cells, Section II reviews our recent knowledge of HSP specific binding to cells of the immune system. In addition, the growing number of HSP receptors and the resultant receptor-mediated signaling that occurs is comprehensively reviewed.

In Section III, immune responses elicited by exogenous HSP are reviewed. An up-to-date account of the ability of HSP to act as a danger signal and thereby augment host defense against various diseases or induce devastating autoimmune responses is also discussed in this section.

Finally, in Section IV, the role of HSP in antigen processing, presentation and its effect on inflammation and disease are reviewed. Specifically, the role of HSP-peptide complexes, controlling the inflammatory process and regulatory T cells are comprehensively reviewed.

Heat Shock Proteins: Potent Mediators of Inflammation and Immunity provides the most up-to-date and exciting insights into how heat shock proteins (HSP) modulates the host’s immune response. Written by leaders in the field of heat shock protein immunobiology, the chapters systematically and in a step-wise fashion
takes the reader through the fascinating sequence of events by which heat shock proteins activate immune responses and provides answers as to its biological significance to the host. The book takes the reader systematically and in a step-wise fashion, mechanisms of release, to specific binding and receptor-mediated signaling, activation of host defense or initiation of devastating autoimmunity and finally to antigen processing and presentation and its effect on human diseases. This book is a must read for graduate and postgraduates in the field of Biology (plant and mammal), Biochemistry (pro- and eukaryotic), Immunology, Microbiology, Exercise Medicine, Physiology, Inflammatory diseases, Autoimmunity, Pharmacology and Pathology.

Alexzander A.A. Asea and Antonio De Maio
PART I

MECHANISMS OF HEAT SHOCK PROTEIN RELEASE
CHAPTER 1

RELEASE OF HEAT SHOCK PROTEINS: PASSIVE VERSUS ACTIVE RELEASE MECHANISMS

ALEXZANDER A.A. ASEA*

Division of Investigative Pathology, Scott & White Memorial Hospital and Clinic and The Texas A&M University System Health Science Center College of Medicine, Temple, Texas, USA

Abstract: There is now no doubt that heat shock proteins have a profound immunoregulatory effect on the host’s immune system. This knowledge has successfully been harnessed to generate a number of important clinical trials. However, one intriguing question that remains to be answered is how heat shock proteins (HSP) which do not have peptide leader sequence targeting secretion can gain access to the extracellular milieu. This chapter will discuss the most recent findings in the area of HSP release and attempts to broadly categorize these findings into two basic mechanisms; the passive and active mechanisms

Keywords: Chaperokine; exosomes; heat shock proteins; inflammation; lipid rafts; protein transport; stress

Abbreviations: eHsp72, extracellular Hsp72; ER, endoplasmic reticulum; Hsp, heat shock proteins; Hsc70; constitutively expressed seventy-kilo Dalton heat shock protein; Hsp72, stress inducible seventy-kilo Dalton heat shock protein; HSF-1, heat shock factor-1; IFN-γ, interferon-gamma; IL, interleukin; LDH, lactate dehydrogenase; MβD, methyl β-cyclodexetrin

*A Chief, Division of Investigative Pathology, Scott & White Clinic and The Texas A&M University System Health Science Center College of Medicine, 2401 South 31st Street, Temple, TX 76508 U.S.A. Tel: +1(254)743 – 0201; Fax: +1(254)743 – 0247; E-mail: asea@medicine.tamhsc.edu or asea@swmail.sw.org

PASSIVE RELEASE MECHANISM: NECROSIS, INFECTION AND TRAUMA

Necrosis

Necrotic cell death is an obvious mechanism by which heat shock proteins escape from cells. However, experimental conditions that conclusively demonstrate necrotic cell killing and the biological significance of the released HSP have been difficult to prove. However, Melcher and co-workers demonstrated that non-apoptotic cell killing induces increased levels of HSP concomitant with enhanced immunogenicity, whereas cells killed predominantly by apoptosis showed low levels of HSP expression and were less immunogenic (Melcher et al., 1998). Inhibition of apoptotic cell death by overexpression of bcl-2 induced increased levels of HSP. Interestingly, stable transfection of B16 and CMT93 cells with cDNA encoding Hsp70 significantly augmented the immunogenicity of both tumors (Melcher et al., 1998). These results were later independently supported by experiments performed by Basu and colleagues who reported that heat shock proteins including gp96, calreticulin, Hsp90 and Hsp72 are released from cells undergoing necrotic but not apoptotic cell death (Basu et al., 2000). These authors demonstrated that necrosis induced by freeze thaw, but not apoptosis induced by irradiation, resulted in the release of HSP into the culture supernatant, respectively. It was further demonstrated that the released HSP stimulates macrophages to secrete cytokines, and induces the expression of co-stimulatory molecules and enhanced antigen presentation by dendritic cells (Basu et al., 2000) a process known as the chaperokine activity of HSP which describes the ability of HSP to act as both chaperone and cytokine (Asea, 2003, 2005; Asea et al., 2000b). The chaperokine activity of HSP has been described in cancer (Facciponte et al., 2005; Facciponte et al., 2006; Gross et al., 2003a; Gross et al., 2003b; Gross et al., 2003c), stem cells (Son et al., 2005), complement activity (Prohaszka et al., 2002), transplantation and allograft injury (Land, 2005), and septic shock (Wheeler et al., 2005), as a trigger for autoimmune reactions (Yokota et al., 2006) and exercise immunophysiology (Fleshner and Johnson, 2005).

Infection

Infection of cells with a variety of microorganisms could result in cell death by apoptosis or necrosis (Fischetti, 2005; Gruenberg and van der Goot, 2006; Mathis et al., 2005; Thorne et al., 2005a; Thorne et al., 2005b). Lytic viruses are known to induce necrotic cell death (Brinkmann and Schulz, 2006; O’Shea, 2005; O’Shea et al., 2005). Infection of SK29-Mel-1 with the lytic parvovirus H1 occurs in the absence of HLA class I or costimulatory molecule upregulation (Moehler et al., 2003). In addition, infection is accompanied by a strong release of the inducible Hsp72, but not the constitutively expressed Hsc73. When compared with the classical non-lethal heat-shock treatment, a known inducer of HSP release (Bauero et al., 2005; Broquet et al., 2003; Gastpar et al., 2005; Lancaster and
Mechanisms of heat shock protein release

Febbraio, 2005), the Hsp72 release is demonstrated to be higher and of longer duration (Moehler et al., 2003). Admixing parovirus-mediated tumor cell lysate with antigen presenting cells including human dendritic cells (DC) and monocytes resulted in potent chaperokine activity. Further studies by the same group demonstrated that parovirus-mediated cell killing enhances tumor immunogenicity by Hsp72 release and contributes to the anti-tumor effect of paroviruses (Moehler et al., 2005). Although these authors did not directly demonstrate that H1-induced cell killing and its associated Hsp72 release promotes the loading and maturation of antigen presenting cells and by extension triggers tumor specific immune responses. One can speculate that the release of Hsp72 can facilitate priming of T cells specific for viral antigens in a similar fashion to that described in autoimmune diabetes and encephalomyelitis (Chandawarkar et al., 2004), and HIV infection (SenGupta et al., 2004).

Other kinds of infection known to stimulate innate and adaptive immune responses might also result in necrotic cell death; namely atherosclerosis. Atherosclerosis is a disease in which the immune response plays a very important role in its pathogenesis (for review see (Hansson and Libby, 2006)). The Wick laboratory was the first to provide evidence that the first stages of atherosclerosis is an autoimmune response against Hsp60 that is expressed by endothelial cells in areas that are subject to increased haemodynamic stress (Wick et al., 1995a; Wick et al., 1995b). Antibody-mediated and T-cell-mediated immune responses against Hsp60 have both been demonstrated early in arthrogenesis (for review see (Wick et al., 1995b)).

Why would the hosts own immune system turn against it in such a fashion? The complete answer has not yet been elucidated. However, there is an indication that the answer might in part be due to molecular mimicry, (for review see (Binder et al., 2002; Rose, 2000; Rose and Mackay, 2000)). Since Chlamydial heat shock proteins are potent antigenic stimuli able to induce specific cell-mediated and humoral immune responses, several studies have proposed a link between Chlamydia pneumoniae and pathologies associated with atherosclerosis and coronary heart disease (CHD) (Ausiello et al., 2005; Hoshida et al., 2005). In addition, Chlamydial heat shock proteins have been suggested to increase the risk of secondary cardiovascular events in patients with coronary heart disease with diabetes (Guech-Ongey et al., 2006).

Trauma

Severe trauma is a clear example by which intracellular Hsp72 gains free and unfettered access to the extracellular milieu. Trauma due to surgery after coronary artery bypass grafting has been shown to result in increased systemic Hsp72 levels (Dybdahl et al., 2004; Dybdahl et al., 2002). In a study designed to determine a correlation between serum levels of Hsp72 with survival of trauma patients and/or the severity of the postinjury inflammatory response, Pittet and colleagues demonstrated a significant upregulation in circulating serum Hsp72 in severely