Cancer Gene Therapy
Contemporary Cancer Research
Jac A. Nickoloff, Series Editor

Cancer Gene Therapy, edited by David T. Curiel and Joanne T. Douglas, 2005
Brain Tumors, edited by Francis Ali-Osman, 2005
DNA Damage and Repair, Volume 3: Advances From Phage to Humans,
edited by Jac A. Nickoloff and Merl F. Hoekstra, 2001
Prostate Cancer: Biology, Genetics, and the New Therapeutics,
Chemokines and Cancer, edited by Barrett J. Rollins, 1999
Breast Cancer: Molecular Genetics, Pathogens, and Therapeutics,
edited by Anne M. Bowcock, 1999
DNA Damage and Repair, Volume 1: DNA Repair in Prokaryotes and Lower Eukaryotes,
edited by Jac A. Nickoloff and Merl F. Hoekstra, 1998
DNA Damage and Repair, Volume 2: DNA Repair in Higher Eukaryotes,
edited by Jac A. Nickoloff and Merl F. Hoekstra, 1998
Preface

The field of cancer therapy is beginning to reap the benefits of our increasing understanding of the molecular basis of cancer. In contrast to conventional surgical interventions or cytotoxic chemotherapy and radiation therapy, a new generation of targeted cancer therapeutics is being specifically directed toward molecular pathways that underlie the malignant phenotype. In this regard, the management of patients with Philadelphia chromosome-positive chronic myeloid leukemia has been profoundly changed by Gleevec® (Novartis), a small molecule that specifically inhibits the Bcr-abl tyrosine kinase that is central to the pathogenesis of this disease. Particularly noteworthy is the rapid translation of this molecular targeted agent from the laboratory to clinical trials and thence to regulatory approval. Other novel targeted therapeutics that are currently approved by the FDA for treatment of patients with cancer include Rituxan® (Genentech), a humanized monoclonal antibody that binds to the CD20 antigen present on B-cell lymphomas and is currently approved for the treatment of patients with relapsed or refractory low-grade or follicular CD20-positive B-cell non-Hodgkin’s lymphoma. The humanized anti-HER-2/neu monoclonal antibody Herceptin® (Genentech) is approved for use in patients with metastatic breast cancer that demonstrates overexpression of HER-2/neu. These therapies target specific tumor cell receptors or signaling events that are critical to tumor progression while reducing toxicity to normal cells.

Within this context of targeted molecular interventions with the potential to achieve a much higher level of specificity of action than afforded by conventional drug therapeutics, we can view cancer gene therapy as the transfer of genetic material to the cells of an individual with the goal of eradicating cancer cells. This can be accomplished directly by transferring genetic material into the cancer cells themselves to bring about their destruction, or indirectly, either by stimulating the immune system to recognize and eliminate the cancer cells or by targeting the nonmalignant stromal cells that support the growth and metastasis of cancer cells. Each of these approaches exploits our expanding knowledge of the genetic basis of cancer, thereby allowing rationally targeted interventions at the molecular level. These cancer gene therapy strategies are discussed in the first contributions to Cancer Gene Therapy.

Any gene therapy strategy is dependent on the safe and efficient transfer of the therapeutic gene selectively to the target cell. Indeed, one of the main lessons learned from the success of clinical gene therapy trials for monogenic inherited disorders, such as severe combined immunodeficiency and hemophilia, is that therapeutic advances are predicated on improvements in the design of gene delivery vehicles, or vectors. Hence, two chapters focus on the development of vectors for cancer gene therapy, both viral and nonviral, emphasizing how the properties of a given vector favor its application in a particular therapeutic approach.

The recognition of the limitations of replication-defective vectors, which are incapable of delivering therapeutic genes to more than a small proportion of cancer
cells in a 3D tumor mass, has led to the development of a new class of anticancer therapeutic agents, oncolytic replication-competent viruses, which are also described. The safety of oncolytic viruses derives from the restriction of their replication to tumor cells, while sparing normal cells. A number of naturally occurring viruses possess intrinsic selectivity for replication in tumor cells, while advances in the molecular characterization of viruses and cancer cells have enabled other lytic viruses to be genetically engineered to selectively replicate in, and thus destroy, tumor cells.

It is apparent that therapeutic gene delivery designed to eradicate cancer cells in the clinical setting would benefit from noninvasive techniques to monitor the extent of gene transfer and disease regression during the course of treatment. Hence, a chapter describes imaging of cancer gene therapy. After a chapter discussing the lessons learned to date from clinical trials for cancer gene therapy, the final chapter reviews the regulatory guidelines with which future trials should comply.

Thus, the contributions to this book demonstrate that cancer gene therapy strategies are founded on an understanding of the molecular basis of disease that, together with improvements to the safety and efficacy of vectors, will provide a rational basis for their application in the clinic setting. It is anticipated that gene therapy will ultimately take its place in the clinic alongside other targeted molecular inventions for cancer.

David T. Curiel, MD, PhD
Joanne T. Douglas, PhD
Contents

Preface ... v
Contributors ... ix

1 Cancer Gene Therapy: Historical Perspective
 Malcolm K. Brenner ... 1

2 The Genetic Basis of Cancer
 Akseli Hemminki and Kari Hemminki .. 9

3 Tumor Suppressor Gene Replacement for Cancer
 Jack A. Roth and Susan F. Grammer .. 19

4 Antisense Technology
 Ruiwen Zhang and Hui Wang .. 35

5 Cancer Therapeutic Applications of Ribozymes and RNAi
 Lisa Scherer and John J. Rossi ... 51

6 Fusogeneic Membrane Glycoproteins for Cancer Gene Therapy:
 A Better Class of Killer
 Andrew Bateman, Vy Phan, Alan Melcher, Emmanouela Linardakis,
 Kevin Harrington, and Richard Vile .. 65

7 Suicide Gene Therapy
 Caroline J. Springer and Ion Niculescu-Duvaz .. 81

8 Molecular Chemotherapy Approaches
 Daniel H. Palmer and David J. Kerr .. 109

9 Genetic Immunotherapy Approaches
 Denise R. Shaw and Albert F. LoBuglio .. 129

10 Immunotherapy of Cancer by Dendritic Cell-Targeted
 Gene Transfer
 Tanja D. de Gruijl, Herbert M. Pinedo, and Rik J. Schepers 143

11 Dendritic Cells
 Weiping Zou, Shuang Wei, and Tyler J. Curiel 173

12 Polynucleotide Immunization for Cancer Therapy
 Theresa V. Strong ... 185

13 Development of Oncolytic Replication-Competent
 Herpes Simplex Virus Vectors: The G207 Paradigm
 Tomoki Todo and Samuel D. Rabkin ... 199
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Development of Oncolytic Adenoviruses: From the Lab Bench to the Bedside</td>
<td>John A. Howe, Robert Ralston, and Murali Ramachandra</td>
</tr>
<tr>
<td>15</td>
<td>Conditionally Replicating Adenoviruses for Cancer Treatment</td>
<td>Ramon Alemany</td>
</tr>
<tr>
<td>16</td>
<td>Reovirus as an Oncolytic Agent</td>
<td>Megan K. Patrick, Kara L. Norman, and Patrick W. K. Lee</td>
</tr>
<tr>
<td>17</td>
<td>Antiangiogenic Gene Therapy of Cancer</td>
<td>Steve Gyorffy, Jack Gauldie, A. Keith Stewart, and Xiao-Yan Wen</td>
</tr>
<tr>
<td>18</td>
<td>Proapoptotic Strategy in Cancer Gene Therapy</td>
<td>David H. Holman, Marc L. Hyer, Ahmed El-Zawahry, Gina M. Keller, and James S. Norris</td>
</tr>
<tr>
<td>19</td>
<td>Antimetastasis</td>
<td>Duen-Hwa Yan, Kung-Ming Rau, and Mien-Chie Hung</td>
</tr>
<tr>
<td>20</td>
<td>Antimetastatic Gene Therapy: Prostate Cancer Theory to Therapy</td>
<td>Thomas A. Gardner, Juan Antonio Jiménez, Leland W. K. Chung, and Chinghai Kao</td>
</tr>
<tr>
<td>21</td>
<td>Drug Resistance Gene Transfer as an Antitumor Strategy</td>
<td>Colin L. Sweeney and R. Scott McIvor</td>
</tr>
<tr>
<td>22</td>
<td>Chemosensitization</td>
<td>Per Eystein Lønning</td>
</tr>
<tr>
<td>23</td>
<td>Radiosensitization by Gene Therapy</td>
<td>Steven J. Chmura, Michael Garofalo, and Ralph R. Weichselbaum</td>
</tr>
<tr>
<td>24</td>
<td>Nonviral Vector Systems for Cancer Gene Therapy</td>
<td>Greg F. Walker and Ernst Wagner</td>
</tr>
<tr>
<td>25</td>
<td>Viral Vectors for Cancer Gene Therapy</td>
<td>Joanne T. Douglas and David T. Curiel</td>
</tr>
<tr>
<td>26</td>
<td>Bacterial Systems for Tumor-Specific Gene Therapy</td>
<td>J. Martin Brown, Shie-Chau Liu, Jan Theys, and Philippe Lambin</td>
</tr>
<tr>
<td>27</td>
<td>Molecular Imaging of Cancer Gene Therapy</td>
<td>Harvey R. Herschman</td>
</tr>
<tr>
<td>28</td>
<td>Cancer-Related Gene Therapy Clinical Trials</td>
<td>Robert J. Korst and Ronald G. Crystal</td>
</tr>
<tr>
<td>29</td>
<td>Regulatory Aspects in the Development of Gene Therapies</td>
<td>Rosemarie Aurigemma, Joseph E. Tomaszewski, Sheryl Ruppel, Stephen Creekmore, and Edward A. Sausville</td>
</tr>
</tbody>
</table>

Index: 473
Contributors

RAMON ALEMANY • Gene Therapy Program, Institut Catalá d’Oncologia, Barcelona, Spain
ROSEMARIE AURIGEMMA • Biological Resources Branch, Developmental Therapeutics Program, National Cancer Institute, NCI-Frederick, Frederick, MD
ANDREW BATEMAN • Molecular Medicine Program and Department of Immunology, Mayo Clinic, Rochester, MN
MALCOLM K. BRENNER • Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
J. MARTIN BROWN • Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
STEVEN J. CHMURA • Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
LELAND W. K. CHUNG • Department of Urology, Molecular Urology and Therapeutics Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
STEPHEN CREEKMORE • Biological Resources Branch, Developmental Therapeutics Program, National Cancer Institute, NCI-Frederick, Frederick, MD
RONALD G. CRYSTAL • Department of Genetic Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Medical College of Cornell University, New York, NY
DAVID T. CURIEL • Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL
TYLER J. CURIEL • Section of Hematology and Medical Oncology, Tulane Medical School, New Orleans, LA
JOANNE T. DOUGLAS • Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL
AHMED EL-ZAWAHRY • Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
THOMAS A. GARDNER • Departments of Urology, Microbiology, and Immunology, Walther Oncology Center, Indiana University Medical Center, Indianapolis, IN
MICHAEL GAROFALO • Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
JACK GAULDIE • Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
SUSAN F. GRAMMER • Biotechwrite: Biomedical and Science Communications, Kalamazoo, MI
TANJA D. DE GRUIJL • Departments of Medical Oncology and Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
Contributors

STEVE GYORFFY • Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
KEVIN HARRINGTON • Molecular Medicine Program and Department of Immunology, Mayo Clinic, Rochester, MN
AKSELI HEMMINKI • Rational Drug Design, Department of Oncology, University of Helsinki, Helsinki, Finland
KARI HEMMINKI • German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Biosciences, Karolinska Institute, Stockholm, Sweden
HARVEY R. HERSCHMAN • Departments of Biological Chemistry and Pharmacology, University of California at Los Angeles, Los Angeles, CA
DAVID H. HOLMAN • Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
JOHN A. HOWE • Department of Molecular Biology and Biochemistry, Canji, Inc., San Diego, CA
MIEN-CHIE HUNG • Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX
MARC L. HYER • The Burnham Institute, La Jolla, CA
JUAN ANTONIO Jiménez • Departments of Urology, Microbiology and Immunology, Indiana University Medical Center, Indianapolis, IN
CHINGHAI KAO • Departments of Urology, Microbiology and Immunology, Walther Oncology Center, Indiana University Medical Center, Indianapolis, IN
GINA M. KELLER • Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
DAVID J. KERR • Department of Clinical Pharmacology, University of Oxford, Oxford, United Kingdom
ROBERT J. KORST • Division of Thoracic Surgery, Department of Cardiothoracic Surgery and Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY
PHILIPPE LAMBIN • Department of Experimental Radiation Oncology, University of Maastricht, Maastricht, The Netherlands
PATRICK W. K. LEE • Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
EMMANOUELA LINARDAKIS • Molecular Medicine Program and Department of Immunology, Mayo Clinic, Rochester, MN
SHIE-CHAU LIU • Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
ALBERT F. LOBUGLIO • Division of Hematology and Oncology, Department of Medicine and the Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
PER EYSTEIN LØNNING • Department of Oncology, University of Bergen, Norway
R. SCOTT McIVOR • Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
ALAN MELCHER • Molecular Medicine Program and Department of Immunology, Mayo Clinic, Rochester, MN
ION NICULESCU-DUVAZ • CRC Centre for Cancer Therapeutics at the Institute of Cancer Research, Sutton, United Kingdom
JAN THEYS • Department of Experimental Radiation Oncology, University of Maastricht, The Netherlands
TOMOKI TODO • Department of Neurosurgery, University of Tokyo Hospital, Tokyo, Japan
JOSEPH E. TOMASZEWSKI • Toxicology & Pharmacology Branch, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD
RICHARD VILE • Molecular Medicine Program and Department of Immunology, Mayo Clinic, Rochester, MN
ERNST WAGNER • Department for Pharmacy, Ludwig-Maximillians-Universitaet, Muenchen, Germany
GREG F. WALKER • Department for Pharmacy, Ludwig-Maximillians-Universitaet, Muenchen, Germany
HUI WANG • Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL
SHUANG WEI • Section of Hematology and Medical Oncology, Tulane Medical School, New Orleans, LA
RALPH R. WEICHSELBAUM • Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
XIAO-YAN WEN • Department of Experimental Therapeutics, Toronto General Research Institute/University Health Network; McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
DUEN-HWA YAN • Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX
RUWEN ZHANG • Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL
WEIPING ZOU • Section of Hematology and Medical Oncology, Tulane Medical School, New Orleans, LA
1

Cancer Gene Therapy

Historical Perspective

Malcolm K. Brenner

1. INTRODUCTION

Although it is always tempting to skip the history of a field, this is particularly unwise for a discipline as young as cancer gene therapy. Indeed, it is the history of the last few years that is largely dictating the research directions that will likely be both profitable and permitted in the future. This brief introductory chapter outlines the early days of cancer gene therapy—the successes and the setbacks—and suggests how the remaining challenges may be faced.

2. BACKGROUND

When the possibility of human gene therapy was first mooted (and illicitly attempted) in the 1970s, it was assumed that inherited single-gene disorders would be the target of the approach (1). The obvious elegance of repairing or replacing the root cause of a disease had and retains an enormous appeal to researchers, patients, and public alike. Unfortunately, it soon became obvious that the tools available were simply not up to the job.

Effective gene therapy of genetic disorders requires a vector that can efficiently transduce the desired cell type, in a targeted manner, preferably in vivo. Moreover, the gene product usually would need to be produced in substantial quantities for a long time, often in a regulated manner. Above all, the process and consequences of gene transfer should be safe.

Sadly, the gene transfer vectors available for clinical use, then as now, possess none of these desirable properties. They are diffusely targeted, inefficient at making transgene products, and difficult to regulate. As the gene therapy community has painfully learned, they are not even all that safe for they have the potential to produce immediate (adenovectors) or delayed (retroviral vectors) severe or lethal adverse events.

Many of these limitations were obvious to early workers in the field and led them to concentrate on disorders in which low-frequency transduction of stem cells would lead to a selective growth advantage and repopulation of the host and in which unregulated expression of even small quantities of the transgenic material would be of therapeutic benefit. The group of disorders that most clearly met these criteria was the inherited severe combined immunodeficiency syndromes. But, although these remain of great interest as a possible “proof of principle” for establishing the value of this new technology, they are exceedingly rare, and there was a strong feeling that the technology should be applied to more common conditions. Although these included more widespread inherited genetic disorders such as cystic fibrosis, the prospect of treating cancer with gene therapy grew increasingly justifiable in the 1980s.