Annals of Information Systems

Series Editors
Ramesh Sharda
Oklahoma State University
Stillwater, OK, USA

Stefan Voß
University of Hamburg
Hamburg, Germany

For further volumes:
http://www.springer.com/series/7573
Web-based applications provide the power of desktop and server applications with the flexibility and accessibility of the web. Using web browsers, users can securely access applications from anywhere within the reach of the company intranet or extranet. The special issue strives to explore the advanced web-based information systems and database applications in healthcare area.

Healthcare organizations are undergoing major reorganizations and adjustments to meet the increasing demands of improved healthcare access and quality, as well as lowered costs. As the use of information technology to process medical data increases, much of the critical information necessary to meet these challenges is being stored in digital format. Web-enabled information technologies can provide the means for greater access and more effective integration of healthcare information from disparate computer applications and other information resources.

This book presents studies from leading researchers and practitioners focusing on the current challenges, directions, trends, and opportunities associated with healthcare organizations and their strategic use of web-enabled technologies. Managing healthcare information systems with web-enabled technologies is an excellent vehicle for understanding current and potential uses of Internet technology in the broad areas of healthcare and medical applications.

The covered topics include semantic web applications, workflow management systems, process management and workflow management systems, content management and portal technology, location-aware systems and mobile technology, prototypes of web-based information systems, data and web mining, access control and security in web-based information systems, web-based information systems and databases, transaction management over the web and tools for the implementation of web-based information systems.

This handbook is an excellent source of comprehensive knowledge and literature on the topic of distributed health and e-health applications.

All of us who worked on the book hope that readers will find it useful.

Athina A. Lazakidou, Ph.D.
Contents

1 Development and Evaluation of a Web-Based Personal Electronic Health Record (pEHR) .. 1
 Vasileios G. Stamatopoulos, George E. Karagiannis, Michael L. Rigby, and Sophia Kossida

2 Exploring the Potential of Over-the-Web Psychiatry 13
 Pantelis Angelidis

3 An Intelligent Web-Based Healthcare System: The Case of DYMOS .. 19
 Dimosthenis Georgiadis, Panagiotis Germanakos, George Samaras, Constantinos Mourlas, and Eleni Christodoulou

4 An Empirical Study of Sections in Classifying Disease Outbreak Reports .. 47
 Son Doan, Mike Conway, and Nigel Collier

5 A Web-Based Application to Exchange Ophthalmologic Health Records Using Open-Source Databases 59
 Isabel de la Torre Díez, Roberto Hornero Sánchez, Miguel López Coronado, María Isabel López Gálvez, and Beatriz Sainz Abajo

6 An Image-Centric, Web-Based, Telehealth Information System for Multidisciplinary Clinical Collaboration 77
 Patricia Goede, Lori Frasier, and Iona Thraen

7 SOAP/WAD-Based Web Services for Biomedicine 101
 Thomas Meinel and Ralf Her Wig

8 Web Resources for Gene List Analysis in Biomedicine 117
 Marco Masseroli and Marco Tagliasacchi

9 Web-Based Applications in Healthcare 143
 Athina Lazakidou
10 Evaluation for Web-Based Applications 157
 Anastasia N. Kastania and Stelios Zimeras

11 Web-Based Communities for Lifelong Medical Learning 167
 Iraklis Varlamis and Ioannis Apostolakis

12 Evaluation of Wikis Exploited for Medicine Courses Teaching . . 181
 Georgia Lazakidou, Konstantinos Siassiakos,
 Athina Lazakidou, and Christina Ilioudi

13 Computer-Based Oxygen Transport Scenario Analysis:
 A New Web-Based Medical Education Resource 191
 D. John Doyle

14 Development of an Educational Web Site to Assist in
 Learning Clinical Airway Management 205
 D. John Doyle

15 An Integrated Approach in Medical Decision-Making
 for Eliciting Knowledge ... 215
 Harleen Kaur and Siri Krishan Wasan

16 Using Decision Trees for the Semi-automatic Development
 of Medical Data Patterns: A Computer-Supported Framework . 229
 Aikaterini Fountoulaki, Nikos Karacapilidis, and
 Manolis Manatakis

17 Telemedicine for the Diabetic Foot: A Model for Improving
 Medical Care, Developing Decision Support Systems, and
 Reducing Medical Cost .. 243
 Adriana Fodor and Eddy Karnieli

Index ... 259
Contributors

Beatriz Sainz Abajo Department of Signal Theory and Communications, University of Valladolid, Campus Miguel Delibes, s/n, 47011 – Valladolid, Spain, beasai@tel.uva.es

Pantelis Angelidis University of Western Macedonia, Department of Engineering Informatics and Telecommunications, Karamanli and Lygeris, GR-50100 Kozani, Greece, paggelidis@uowm.gr

Ioannis Apostolakis Department of Sciences, Technical University of Crete, Crete, Greece, gapostolakis@nsph.gr

Eleni Christodoulou Computer Science Department, University of Cyprus, CY-1678 Nicosia, Cyprus, cseleni@cs.ucy.ac.cy

Nigel Collier National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Mike Conway National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Miguel López Coronado Department of Signal Theory and Communications, University of Valladolid, Campus Miguel Delibes, s/n, 47011 – Valladolid, Spain, miglop@tel.uva.es

Son Doan Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA, doan@nii.ac.jp

D. John Doyle Professor of Anesthesiology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Staff Anesthesiologist, Department of General Anesthesiology, Cleveland Clinic Foundation, 9500 Euclid Avenue, E31 Cleveland, OH 44195, USA, doylej@ccf.org

Lori Frasier MD, Professor of Pediatrics, University of Utah School of Medicine, USA, lori.frasier@ihc.com

Adriana Fodor Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, Haifa, Israel; Diabetes, Nutrition and Metabolic Diseases Center, Cluj-Napoca, Romania, adifodor@yahoo.com
Aikaterini Fountoulaki Industrial Management and Information Systems Lab, MEAD, University of Patras, 26500 Rion-Patras, Greece, fountoul@mech.upatras.gr

María Isabel López Gálvez University Institute of Applied Ophthalmobiology (IOBA), University of Valladolid. Edificio Ciencias de la Salud – Avda. Ramón y Cajal, 7, 47005 – Valladolid, Spain, maribel@ioba.med.uva.es

Dimosthenis Georgiadis Computer Science Department, University of Cyprus, CY-1678 Nicosia, Cyprus, dimos@cs.ucy.ac.cy

Panagiotis Germanakos Computer Science Department, University of Cyprus, CY-1678 Nicosia, Cyprus, pgerman@cs.ucy.ac.cy; Department of Management and MIS, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 24005, 1700 Nicosia, Cyprus, germanakos.p@unic.ac.cy

Patricia Goede VisualShare, Salt Lake City, USA, patricia.goede@hsc.utha.edu

Ralf Herwig Max Planck Institute for Molecular Genetics, Vertebrate Genomics Department, Bioinformatics Group, Ihnestrasse 63-73, D-14195 Berlin, Germany, herwig@molgen.mpg.de

Christina Ilioudi Department of Informatics, University of Piraeus, Karaoli and Dimitriou Str. 80, GR-18534 Piraeus, Greece, cilioudi@yahoo.com

Nikos Karacapilidis Industrial Management and Information Systems Lab, MEAD, University of Patras, 26500 Rion-Patras, Greece, nikos@mech.upatras.gr

George E. Karagiannis Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK, g.karagiannis@rbht.nhs.uk

Eddy Karnieli Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, Haifa, Israel; Galil Center, Technion–Israel Institute of Technology, Israel

Anastasia N. Kastania Department of Informatics, Athens University of Economics and Business, Patission 76 Str., Athens 10434, Greece, ank@aeub.gr

Harleen Kaur Department of Computer Science, Hamdard University, New Delhi, India, harleen_k1@rediffmail.com

Sophia Kossida Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece, skossida@bioacademy.gr

Athina Lazakidou University of Peloponnese, Faculty of Human Movement and Quality of Life Sciences, Dept. of Nursing, Sparti General Hospital Building Complex, GR-23100 Sparti, Greece, lazakid@uop.gr

Georgia Lazakidou Department of Technology Education and Digital Systems, University of Piraeus, Karaoli and Dimitriou Str. 80, GR-18534 Piraeus, Greece, glazak@unipi.gr
Manolis Manatakis Industrial Management and Information Systems Lab, MEAD, University of Patras, 26500 Rion-Patras, Greece, manata@mech.upatras.gr

Marco Masseroli Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy, masseroli@elet.polimi.it

Thomas Meinel Max Planck Institute for Molecular Genetics, Vertebrate Genomics Department, Bioinformatics Group, Ihnestrasse 63-73, D-14195 Berlin, Germany, meinel@molgen.mpg.de

Constantinos Mourlas Faculty of Communication and Media Studies, National and Kapodistrian University of Athens, 5 Stadiou Str., GR 105-62, Athens, Greece, mourlas@media.uoa.gr

Michael L. Rigby Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK, g.karagiannis@rbht.nhs.uk

George Samaras Computer Science Department, University of Cyprus, CY-1678 Nicosia, Cyprus, cssamara@cs.ucy.ac.cy

Roberto Hornero Sánchez Department of Signal Theory and Communications, University of Valladolid, Campus Miguel Delibes, s/n, 47011 – Valladolid, Spain, robor@tel.uva.es

Konstantinos Siassiakos Military Institute of University Education, Hellenic Naval Academy, Terma, Hatzikyriakou, GR-18539 Piraeus, Greece, siassiakos_k@ideke.edu.gr

Vasileios G. Stamatopoulos Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece, vstamatopoulos@bioacademy.gr

Marco Tagliasacchi Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy

Iona Thraen Director, Patient Safety Initiative, Utah Department of Health, Salt Lake City, USA, ithraen@utah.gov

Isabel de la Torre Díez Department of Signal Theory and Communications, University of Valladolid, Campus Miguel Delibes, s/n, 47011 – Valladolid, Spain, isator@tel.uva.es

Iraklis Varlamis Department of Informatics and Telematics, Harokopio University of Athens, Athens, Greece, varlamis@hua.gr

Siri Krishan Wasan Department of Mathematics, Jamia Millia Islamia, New Delhi, India, skwasan@yahoo.com

Stelios Zimeras Department of Statistics and Actuarial-Financial Mathematics, University of Aegean, Karlovassi, Samos, Greece, zimste@aegean.gr
About the Editor

Dr. Athina Lazakidou currently works at the University of Peloponnese, Department of Nursing in Greece as Lecturer in Health Informatics, and at the Hellenic Naval Academy as a Visiting Lecturer in Informatics. She worked as a Visiting Lecturer at the Department of Computer Science at the University of Cyprus (2000–2002) and at the Department of Nursing at the University of Athens (2002–2007). She did her undergraduate studies at the Athens University of Economics and Business (Greece) and received her BSc in Computer Science in 1996. In 2000, she received her PhD in Medical Informatics from the Department of Medical Informatics, University Hospital Benjamin Franklin at the Free University of Berlin, Germany. She is also an internationally known expert in the field of computer applications in healthcare and biomedicine, with six books and numerous papers to her credit. She was also Editor of the “Handbook of Research on Informatics in Healthcare and Biomedicine” and “Handbook of Research on Distributed Medical Informatics and E-Health”, the best authoritative reference sources for information on the newest trends and breakthroughs in computer applications applied to healthcare and biomedicine. Her research interests include health informatics, e-learning in medicine, software engineering, graphical user interfaces, (bio)medical databases, clinical decision support systems, hospital and clinical information systems, electronic medical record systems, telematics, and other web-based applications in healthcare and biomedicine.
Chapter 1

Development and Evaluation of a Web-Based Personal Electronic Health Record (pEHR)

Vasileios G. Stamatopoulos, George E. Karagiannis, Michael L. Rigby, and Sophia Kossida

Abstract The objective of personal Electronic Health Record (pEHR) project was to investigate the deployment of an advanced web-based electronic health record service, tailored to the needs of the average European citizen while providing to healthcare professionals the means and the IT tools that will help them to be more effective in daily clinical routine. In this study, a web-based service that authenticates users, provides the personal electronic health record application and enables users to access and/or update their own medical information was developed. The system was evaluated across three different patient groups involving a total of 150 patients suffering from congenital heart disease, Parkinson’s disease and diabetes that were recruited from three different European hospitals. The results indicated the pEHR service to be an effective medium for the storage and management of data by different patient groups. Overall, the three patient groups and healthcare professionals considered the service to have comprehensive and valuable content, to be secure and user-friendly and to have a potential for further improvements while they preferred it to be sponsored free.

Keywords: Electronic Health Records · Web-based · Mobile Citizen · Stakeholder Groups

Abbreviations

pEHR personal Electronic Health Record
EHR Electronic Health Record

1.1 Introduction

The personal Electronic Health Record (pEHR) for the Mobile Citizen project aims to showcase the concept of an electronic health record (EHR) Internet-based system...
that empowers users to create and maintain, at their own responsibility, their pEHR in a user-friendly, interactive and secure way, while providing to the healthcare professionals the information technology tools that will help them to be more effective in their daily clinical routine.

In the past years, the efforts carried out towards the establishment of a common EHR for all citizens within Europe are numerous. However, factual implementation of a common structure and real progress on the area have been achieved mainly in the United States.

Medical information gathering is still done in many cases via paper support, but also there are some local implementations of electronic support. However, the mentioned EHR is neither common to all the practitioners and institutions nor standardized in any way. This means that although there is stored information in electronic format, there is not a common way to communicate it in an easy way among different national healthcare systems if necessary.

1.2 Service Description

1.2.1 Service Model

pEHR services will enable users to create and maintain a personal record in an on-going, user-friendly, interactive and secure way. Given its web-based nature, the proposed EHR will be easily accessible regardless temporal or spatial restrictions [1].

This service addresses the needs of the entire European population. The service users will be able to update their own health record with information regarding their current physical state (e.g. weight), diseases suffered from and relevant treatments (medication, operations, etc.), allergies and health-affecting habits (e.g. smoking or physical exercise). In addition, patients suffering from chronic diseases (e.g. diabetes, cardiovascular diseases, hypertension, etc.) will be able to store important indicators/parameters (i.e. blood glucose level, blood pressure, etc.) related with the state of their disease. Furthermore, the EHR may also contain results of diagnostic examinations in digital format, including diagnostic images such as CT, MRI, X-ray and others. To this end, any hospital or other diagnostic centre willing to provide this additional service to its patients should have an appropriate broadband access to the Internet in order to be able to upload the information to a patient’s EHR. Finally, clinicians will be able to record a diagnosis at the patient’s request.

The personalized information included in the healthcare record can be communicated, in an interactive way, to authorized healthcare professionals using three different authentication methods: (a) secure login using standard SSL and username and password, (b) a Smartcard and (c) an USB token. Nevertheless, the content of the EHR is the citizen’s own responsibility.

This service will be marketed to two different types of customers/patients. On one hand, the service will be available to all European citizens. On the other hand,
the service will also be offered to those organizations that could be interested in sponsoring the pEHR services for a specific group of citizens. These entities can be of a different nature, ranging from private companies to regional public healthcare administration, as well as health insurance companies.

1.2.2 Stakeholder Identification and Benefits

Different stakeholder groups are involved in the operation of the pEHR services. In general, the pEHR services will be paid by stakeholders that either have the role of the direct service recipient (that is the citizen/patient) or the intermediate service provider/beneficiary [2].

While pEHR principally targets the individual citizens/patients, other healthcare professional groups/organizations also belong in the potential pEHR users:

- Patient support organizations and self-help groups
- Doctors
- Healthcare organizations
- Insurance companies
- Pharmacies.

Apparently, pEHR enables the citizen/patient to create and update his/her own web-based medical records. Creating a consolidated electronic record, instead of having several local records of different format (e.g. paper or digital) and at different locations that do not communicate with each other, empowers pEHR users to preserve an integrated file that provides, at once, their clinical status and documents the acts of the professionals in a user-friendly, structured and standardized way.

pEHR systems contribute to the availability of medical information to authorized users and empower the patient to build a complete health record, thus enjoying enhanced mobility and autonomy in selecting the appropriate healthcare provider.

The healthcare professionals and service providers share with the patients the need for immediate access to all relevant clinical data necessary for any given situation, irrespective of time and location, especially in cases of emergency.

For the clinical decision to be accurate, the information must be complete and non-corrupted. pEHR enables good clinical practice in a safe manner since it provides access to a consolidated medical record and supplements the already available, yet in most cases incomplete, professional files.

To this end, clinicians can avoid duplication of activities (i.e. repetition of unnecessary diagnostic tests) and minimize medical errors (e.g. avoid prescription of certain drugs in case of allergies, etc.), while maintaining clinical efficacy and containing costs, especially in the case of the publicly funded healthcare. The above holds true for the insurance companies involved in the care-giving process.

Finally, pharmacists may also benefit from the portable patient records introduced by pEHR. They can review existing clinical information, thus avoiding the
supply of risky combinations of prescribed and over-the-counter products that may have lethal side effects to the patients/customers.

Given the increasing Internet penetration rates in the European population, the rising rate of healthcare professionals with online presence, the current technological advances and the health policy plans, pEHR has a significant potential on a pan-European level as a complete health record service for subscribed customers.

Within the broader healthcare settings that this service will operate, pEHR can be integrated or can communicate with existing, local health platforms and healthcare networks, as well as serve as the means to update current EHR systems in local settings.

pEHR combined with the European Health Insurance Card will facilitate patient mobility and medical travel. Moreover, pEHR can be linked to any e-Reimbursement, e-Prescribing and e-Booking applications utilized by healthcare providers.

1.3 Technical Implementation

1.3.1 Platform Components and Features

The pEHR platform setup was based on two pre-existing components: the Electronic Document Presentment Platform (EDPP – developed by INFORM) and the Virtual Patient Record (VPR – developed by ICCS).

The two modules offer supplementary functionality:

- Creation and management of parameterized EHR by the VPR
- Registration request management, service administration and security capabilities by the EDPP that is integrated and adjusted easily to specific client requirements.

The pEHR services are delivered over the Internet as a web-based interface. The pEHR platform is highly robust and scalable, mainly because it utilizes state-of-the-art XML and messaging technologies. The built-in infrastructure of the application framework includes a collection of XML-encoded resource files for the semantic interoperability of all application tiers and a set of software libraries for the manipulation of the business objects, messaging services and adaptive user interface construction support. Furthermore, this approach natively incorporates the HL7 standard specification, ensuring interoperability between heterogeneous systems, as well as explicit definition of health domain business processes and objects. The ultimate goal of the application framework is to provide a reliable tool for delivering scalable, highly customizable and robust applications for the healthcare sector, which highly benefit the pEHR service.