Stereoselective Synthesis:
Appendix, Author Index and Compound Index
Overview of Contents

Volume E 21f

Appendix: Survey of Chiral Auxiliaries, Solvents, Reagents, and Catalysts

1. Amines .. 5760
2. Alkaloids, Amino Alcohols, and Amino Acids. Their Derivatives and Related Compounds .. 5776
3. Terpenes. Their Derivatives and Analogs 5839
4. Alcohols, Carbohydrates, Hydroxy Acids, and Their Derivatives 5895
5. Heterocycles ... 5935
6. Biaryls .. 5945
7. Organometallic Compounds 5956
8. Phosphorus Compounds .. 5969
9. Sulfur Compounds .. 5994

Author Index .. 6003

Compound Index .. 6203

For Contents to all Volumes see p VII
For Detailed Table of Contents to Volume E 21f see p XI
For List of Abbreviations see inside back cover
METHODS OF
ORGANIC CHEMISTRY
METHODS OF ORGANIC CHEMISTRY
(HOUBEN-WEYL)

ADDITIONAL AND SUPPLEMENTARY VOLUMES TO THE 4TH EDITION

EDITORIAL BOARD

K. H. BÜCHEL · J. FALBE · H. HAGEMANN
LEVERKUSEN · DÜSSELDORF · LEVERKUSEN

M. HANACK · D. KLAMANN · R. KREHER
TÜBINGEN · HAMBURG · DORTMUND

H. KROPF · M. REGITZ · E. SCHAUMANN
HAMBURG · KAISERSLAUTERN · CLAUSTHAL

EDITORIAL OFFICE

J. Y. ROWDEN · S. R. THORNTON
STUTTGART

GEORG THIEME VERLAG STUTTGART · NEW YORK
This book mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs and designations. The Editors and Publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this book does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.
Preface

There was a time when stereoselectivity of a reaction was mostly of mechanistic interest and reactions that could result in the formation of stereoisomers were considered a nuisance and had to be avoided at best. However, this situation has changed over the past two decades, during which stereoselective synthesis has grown into a reliable methodology. This development began with the remodelling of readily available chiral compounds from nature. More recently, these “ex-chiral-pool” synthetic strategies have been complemented and, in many cases, surpassed by the powerful techniques of asymmetric synthesis.

Originally, only a few laboratories were concerned with the design of routes to enantiomerically pure compounds. Since the demand for nonracemic chiral drugs and pesticides has enormously increased, methods of asymmetric synthesis are now bound to be applied by almost every practising chemist. However, newcomers to the field soon find themselves confronted with a confusing vocabulary, with no guidance as to the appropriate method to solve their problem, and with lack of well-documented procedures. This situation frequently leads to frustration or at least to unnecessary work.

This called for the present volume set of the HOUBEN-WEYL series Methods of Organic Chemistry. Since the 1950s HOUBEN-WEYL has served the synthetic community by giving comprehensive critical reviews of the existing synthetic methods in a consistent style and with high reliability. The editors, authors and publisher of HOUBEN-WEYL “Stereoselective Synthesis” have worked together to confer this philosophy to the field of asymmetric synthesis. Thus, we hope to supply a treatise which should become the standard reference in the field.

“Stereoselective Synthesis” gives a comprehensive treatment of chemical transformations in which a new stereocenter is created, i.e., all enantio- and those diastereodifferentiating reactions which allow the absolute and relative configuration of a new stereogenic unit to be controlled. Consequently, mechanism-controlled reactions (e.g. S_N2 displacements), “ex-chiral-pool” syntheses which do not lead to new stereogenic units, and E/Z selective formation of alkenes are not covered.

Following the general introductory chapters covering principles, nomenclature, separation and analysis, the chapters on individual synthetic methods are organized by the type of bond that is broken or formed. Only starting material and products are considered as a basis for the classification, not the reaction mechanism. In the typical HOUBEN-WEYL style, the scope of the most important methods is illustrated with tables of selected examples. Insight into the practical application of the methods can be obtained from the experimental procedures provided.
The wealth of material forced us to break up the work into five volumes (E21a through f). Access to and properties of the common chiral auxiliaries, solvents, reagents and catalysts which are used in various different reactions is covered comprehensively in Volume E 21e avoiding duplication of information in the individual chapters.

The transition of HOUBEN-WEYL from German to English brought about changes in the layout and in the style of presentation without, however, sacrificing the high standard of quality and reliability that is the hallmark of HOUBEN-WEYL.

Special thanks go to our 101 authors who have spent a great deal of time and effort to achieve the goals we have set. We are also indebted to the editorial staff in Stuttgart, who had to cope with the special challenges of editing and publishing a gigantic amount of complex material.

May 1995

Günter Helmchen
Reinhard W. Hoffmann
Johann Mulzer
Ernst Schumann
Contents to all Volumes

Volume E 21 a

Part A. General Aspects
1. Nomenclature and Vocabulary of Organic Stereochemistry
2. Basic Principles of EPC Synthesis
3. Determination of Enantiomeric Purity
 3.1. Direct Methods
 3.2. Formation of Diastereomers
4. Determination of Absolute and Relative Configuration
 4.1. Nuclear Magnetic Resonance Methods (Relative Configuration)
 4.2. X-ray and Neutron Diffraction Methods
 4.3. Chemical Methods
 4.4. Chiroptical Methods

Part B. Synthesis of Axially Chiral Compounds
1. Allenes
2. Biaryls

Part C. Synthesis of Chiral Compounds by Bond Disconnection

Part D. Synthesis of Chiral Compounds by Bond Formation
1. Formation of C–C Bonds
 1.1. Alkylation Reactions
 1.1.1. Chiral Nucleophiles
 1.1.2. Chiral Electrophiles
 1.1.3. Chiral Additives
 1.2. Insertion into C–H Bonds

Volume E 21 b

1.3. Addition to Carbonyl Groups (C=O)
 1.3.1. σ-Type Organometallic Compounds
 1.3.2. Benzyl-Type Organometallic Compounds
 1.3.3. Allyl-Type Organometallic Compounds
 1.3.4. Enolates
 1.3.5. Azaenolates or Nitronates
 1.3.6. Metalated Sulfoxides or Sulfoximides
1.3.7. Enzyme-Catalyzed Hydrocyanation
1.4. Addition to Imino Groups (C=N)
1.4.1. \(\sigma\)-Type Organometallic Compounds
1.4.2. Allylic and Allenic Organometallic Compounds
1.4.3. Enolates and Related Compounds
1.4.4. Strecker and Ugi Reactions
1.4.5. \(N\)-Acyliminium Ion Additions
1.5. Reactions Involving Olefinic Double Bonds
1.5.1. Vinyllogous Substitution Reactions
1.5.2. Addition to \(\alpha,\beta\)-Unsaturated Carbonyl Compounds (Michael-Type Additions)
1.5.3. Addition to Olefinic Double Bonds; Enimines, Nitroalkenes, 4,5-Dihydrooxazoles, \(\alpha,\beta\)-Unsaturated Sulfones, Sulfoxides and Sulfoximines

Volume E 21c

1.5.4. Addition of Free Radicals
1.5.5. Addition of Carbenium Ions to Olefinic Double Bonds and Allylic Systems
1.5.6. Allylic Substitutions Catalyzed by Transition Metal Complexes
1.5.7. Hydroboration of Olefinic Double Bonds
1.5.8. Addition to Olefinic Double Bonds Catalyzed by Transition Metals
1.6. Pericyclic Reactions
1.6.1. Cycloadditions
1.6.2. Ene Reaction

Volume E 21d

1.6.3. Sigmatropic Rearrangements and Electroyclic Reactions
2. Formation of C–H Bonds
2.1. Protonation of Organometallic Compounds, Enolates and Nitronates
2.2. Radical Reactions
2.3. Reduction of Carbonyl Groups (C=O)
2.3.1. Hydrogenation
2.3.2. Reduction with Metals
2.3.3. Reduction with Metal Hydrides
2.3.4. Hydrosilylation and Subsequent Hydrolysis
2.3.5. Reduction with C–H Hydride Donors
2.3.6. Enzyme-Catalyzed and Biomimetic Reductions
2.4. Reduction of Imino Groups (C=N)
2.5. Reduction of Olefinic Double Bonds
2.5.1. Hydrogenation
2.5.2. Hydroboration and Hydroalumination
2.6. [\(\lambda,\lambda\)] Sigmatropic Rearrangements
3. Formation of C–Hal Bonds

Volume E 21e

4. Formation of C–O Bonds
4.1. Oxygenation of Enolates
4.2. Hydroboration of Olefinic Double Bonds Followed by Oxidation
4.3. Hydrosilylation of Olefinic Double Bonds Followed by Oxidation
4.4. 1,2-Dihydroxylation of Olefinic Double Bonds
4.5. Epoxidation of Olefinic Double Bonds
4.6. Cyclization onto Olefinic Double Bonds Forming Lactones and Ethers
4.7. Conjugate Addition of O-Nucleophiles
4.8. Microbial Insertion of Oxygen into C−H Bonds
4.9. Allylic Oxidation with Singlet Molecular Oxygen
4.10. Allylic Oxidation with Selenium Dioxide
4.11. Sigmatropic Rearrangements

5. Formation of C−S Bonds

6. Formation of C−Se or C−Te Bonds

7. Formation of C−N Bonds
7.1. Electrophilic Amination
7.2. Addition to Olefinic Double Bonds
7.3. Conjugate Addition of N-Nucleophiles
7.4. Allylic Substitution Catalyzed by Palladium Complexes
7.5. Allylic Amination
7.6. Sigmatropic Rearrangements

8. Formation of C−P Bonds

9. Formation of C−Si Bonds

10. Formation of C−Sn Bonds

Volume E 21f

Appendix Survey of Chiral Auxiliaries, Solvents, Reagents, and Catalysts
Author Index
Subject Index
Compound Index
Table of Contents

Appendix: Survey of Chiral Auxiliaries, Solvents, Reagents, and Catalysts (R. Hermann)

1. **Amines** ... 5760
 1.1. **Monoamines** .. 5760
 1.2. **Di- and Triamines** ... 5766
2. **Alkaloids, Amino Alcohols, and Amino Acids. Their Derivatives and Related Compounds** 5776
 2.1. **Cinchona Alkaloids** .. 5776
 2.2. **Ephedrine and Related Compounds** 5780
 2.3. **Amino Alcohols and Their Derivatives (Excluding Heterocycles)** 5786
 2.3.1. **Amino Alcohols Derived from Amino Acids** 5786
 2.3.2. **Other Amino Alcohols** ... 5795
 2.4. **Amino Acids and Their Derivatives (Excluding Proline)** 5801
 2.5. **Heterocyclic Compounds** .. 5806
 2.5.1. **Proline, Its Esters and Amides** 5806
 2.5.2. **Other Pyrrolidines** .. 5807
 2.5.3. **Other Heterocycles Containing Nitrogen** 5822
 2.5.3.1. **Five-Membered Rings** 5822
 2.5.3.2. **Other Ring Sizes** ... 5830
3. **Terpenes. Their Derivatives and Analogs** 5839
 3.1. **Compounds Containing the Bicyclo[3.1.1]heptane Structure** 5839
 3.1.1. **α- and β-Pinene** .. 5839
 3.1.2. **Boron Derivatives** .. 5840
 3.1.3. **Other Derivatives** ... 5844
 3.1.3.1. **Amines** .. 5844
 3.1.3.2. **Alcohols** ... 5845
 3.1.3.3. **Ketones** .. 5846
 3.2. **Compounds Containing the Bicyclo[4.1.0]heptane Structure** 5847
 3.2.1. **Boron Derivatives** .. 5847
 3.2.2. **Amino Alcohols and Amino Ethers** 5848
 3.3. **Derivatives of Longifolene** 5848
 3.4. **Compounds Containing the Bicyclo[2.2.1]heptane Structure** 5852
 3.4.1. **Camphor, Fenchone, Borneol, and Fenchol** 5852
 3.4.2. **Simple Derivatives of Camphor** 5853
 3.4.2.1. **Imines** .. 5853
 3.4.2.2. **Oximes** .. 5853
 3.4.2.3. **Diketones** .. 5854
 3.4.2.4. **Esters of Borneol** 5855
 3.4.3. **Amines** ... 5856
 3.4.4. **Alcohols** .. 5857
 3.4.4.1. **Mono-ols** ... 5857
 3.4.4.2. **Diols and Their Ethers** 5860
Table of Contents

3.4.5. Amino Alcohols ... 5862
3.4.6. Sulfonic Acids of Camphor and Their Derivatives 5866
3.4.6.1. 10-Camphorsulfonic Acid and Its Esters 5866
3.4.6.2. Amides .. 5866
3.4.6.3. Sultams ... 5867
3.4.6.4. Oxaziridines ... 5868
3.4.7. Thiols and Sulfides .. 5870
3.4.8. α-Ketopinic Acid and Derivatives 5871
3.4.9. Ring-Enlarged Camphor Derivatives 5871
3.4.10. Ring-Cleaved Camphor Derivatives 5872
3.4.11. Compounds Mimicking Specific Camphor Derivatives 5874
3.4.11.1. Oxaziridines ... 5874
3.4.11.2. Sultams ... 5875
3.5. Compounds Containing a Single Cyclohexane Ring 5883
3.5.1. Menthol, Its Isomers, and Their Esters and Ethers 5883
3.5.2. Other Cyclohexanols .. 5886
3.5.3. Amines and Mercaptans 5889
3.5.4. Other Compounds .. 5891
4. Alcohols, Carbohydrates, Hydroxy Acids, and Their Derivatives . 5895
4.1. Alcohols ... 5895
4.1.1. Mono-ols .. 5895
4.1.2. Diols and Polylols .. 5897
4.1.3. Mercapto Alcohols .. 5906
4.2. Hydroxy Acids and Their Derivatives 5910
4.2.1. Lactic Acid .. 5910
4.2.2. Mandelic Acid ... 5910
4.2.3. Other Monohydroxy Acids 5912
4.2.4. Tartaric Acid .. 5914
4.3. Carbohydrates and Their Derivatives 5921
4.3.1. Carbohydrates C\textsubscript{3} - C\textsubscript{5} 5921
4.3.2. Carbohydrates C\textsubscript{6} 5925
4.3.3. Other Carbohydrates .. 5931
5. Heterocycles .. 5935
5.1. Dioxolanes ... 5935
5.2. Crown Ethers .. 5937
5.3. Boron Compounds .. 5940
6. Biaryls .. 5945
7. Organometallic Compounds ... 5956
7.1. Ferrocene Derivatives .. 5956
7.1.1. Primary Amines .. 5956
7.1.2. Derivatives of (R)- or (S)-1-(N,N-dimethylamino)ethylferrocene 5958
7.2. Other Organometallic Compounds 5961
7.2.1. Compounds with Metals as Stereogenic Centers 5961
7.2.2. Complexes with Chiral Ligands 5963
7.2.3. Complexes with Planar Chirality 5964
8. Phosphorus Compounds .. 5969
8.1. Phosphines ... 5969
8.1.1. Monophosphines .. 5969
8.1.1.1. Compounds with Chiral Phosphorus 5969
8.1.1.2. Other Monophosphines 5971
8.1.2. Diphosphines ... 5973
8.1.2.1. Compounds with Stereogenic Phosphorus 5973
8.1.2.2. \(C_2 \)-Symmetric Compounds .. 5973
8.1.2.3. Other Diphosphines .. 5981
8.2. Compounds Containing P–O and/or P–N Bonds 5985
8.2.1. Mono-phosphinites .. 5985
8.2.2. Di-phosphinamidites ... 5985
8.2.3. Di-phosphinites .. 5986
8.2.4. Mixed Phosphinites/Phosphinamidites 5987
8.3. Derivatives of Phosphorus and Phosphoric Acid 5988
9. Sulfur Compounds .. 5994
9.1. Sulfonium Salts .. 5994
9.2. Sulfinates .. 5995
9.3. Sulfoxides ... 5996
9.4. Sulfoximides and Related Compounds 5998

Author Index ... 6003

Compound Index ... 6203
Appendix

Survey of Chiral Auxiliaries, Solvents, Reagents, and Catalysts

R. Herrmann

Introduction

The purpose of this appendix is to survey chiral auxiliaries, solvents, reagents, and catalysts which are often used in stereoselective bond-forming reactions, thus avoiding repetition of details on the synthesis of these compounds in the other sections of Houben-Weyl Volume E21 which discuss specific reaction types. It will not contain every chiral compound ever used in asymmetric synthesis, but will focus on compounds mentioned in this Houben-Weyl volume. Reagents used exclusively for the resolution of racemates are not included, as these are treated in more detail in Section A.2. Enzymes, which can also be considered as chiral catalysts, are also not discussed; they are beyond the scope of this section, which concentrates on chemical techniques.

This survey is structured by functional groups and/or common structures present in the compounds considered. This implies that structural analogy rather than synthetic logic defines the place where a specific compound can be found; there are only a few exceptions to this principle. For example, compounds mimicking the typical reactivity of others are treated together, such as chiral oxaziridines and sultams, which are included in Section 3.4.11., although they do not contain the bicyclo[2.2.1]skeleton which is the general topic of Section 3.4. This section also contains a subsection on ring-enlarged (3.4.9.) and ring-cleaved (3.4.10.) derivatives of camphor, where synthetic logic has been chosen as the ordering principle. In cases of doubt, the reader should use the tabular survey at the end of the section which they expect to contain the compound. Generally, the logic is applied that a compound should appear as early as possible if it can be attributed to more than one section. A few exceptions are made for closely related compounds such as phosphorus and sulfur compounds which are listed in specific sections, as their syntheses are often closely related. Wherever possible, cross-references are made to sections where their precursors are described.

Table 1. Abbreviations Used for Commercial Suppliers

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Supplier</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sigma-Aldrich-Chemie</td>
<td>Postfach 1120, D-89555 Steinheim</td>
</tr>
<tr>
<td></td>
<td>GmbH & Co. KG</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Boehringer Ingelheim KG</td>
<td>Chemicals Division, D-55216 Ingelheim</td>
</tr>
<tr>
<td>C</td>
<td>Carl Roth GmbH & Co.</td>
<td>Schoemperlenstr. 1–5, D-76185 Karlsruhe</td>
</tr>
<tr>
<td>D</td>
<td>Degussa AG</td>
<td>GB Industrie- und Feinchemikalien, Postfach 11053, D-60287 Frankfurt</td>
</tr>
<tr>
<td>F</td>
<td>Fluka Chemie AG</td>
<td>Industriestr. 25, CH-9470 Buchs</td>
</tr>
<tr>
<td>J</td>
<td>Acros Chimica</td>
<td>Postfach 23, D-61130 Nidderau</td>
</tr>
<tr>
<td>M</td>
<td>Merck KGaA</td>
<td>D-84271 Darmstadt</td>
</tr>
<tr>
<td>R</td>
<td>Riedel-de-Haën AG</td>
<td>Postfach 100262, D-30918 Seelze</td>
</tr>
<tr>
<td>T</td>
<td>Tokyo Kasei Kogyo Co. Ltd. (TCI)</td>
<td>3-1-13, Nihonbashi-Honcho, Chuo-Ku, Tokyo 103, Japan</td>
</tr>
</tbody>
</table>

for references see p 5765