Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland) P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA) E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK) I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan) E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany) B. M. Trost (Stanford, USA)

October 2000
Dedicated To:

All chemists undaunted by
the mischief of organopotassiums.
All those who nurture perseverance
and collaboration of minds.
Our parents, our children, and theirs.
All students, past, present, and future.
And the indomitable Krista Voigt.
Volume 8:
Compounds of Group 1 (Li—Cs)

Volume 8a

8.1 Lithium Compounds
Keyword Index
Author Index
Abbreviations

Volume 8b

8.2 Sodium Compounds
8.3 Potassium Compounds
8.4 Rubidium and Cesium Compounds
Keyword Index
Author Index
Abbreviations
Volume 8b: Compounds of Group 1 (Li...Cs)

Preface ... V

Table of Contents ... XV

Introduction
M. Majewski and V. Snieckus ... 863

8.2 Product Class 2: Sodium Compounds
A. Mordini and M. Valacchi ... 879

8.2.1 Product Subclass 1: Sodium Metal and Sodium–Potassium Alloy
P. Venturello and M. Barbero ... 881

8.2.2 Product Subclass 2: Sodium Hydride
P. Venturello and M. Barbero ... 895

8.2.3 Product Subclass 3: Sodium Halides and Sodium Cyanide
A. Paul Krapcho ... 925

8.2.4 Product Subclass 4: Sodium–Oxygen Compounds
A. Jonczyk and A. Kowalkowska .. 1011

8.2.5 Product Subclass 5: Sodium–Nitrogen Compounds
A. Jonczyk and A. Kowalkowska .. 1141

8.2.6 Product Subclass 6: Alkylsodium Compounds
A. Mordini and M. Valacchi ... 1197

8.2.7 Product Subclass 7: Alkenylsodium Compounds
A. Mordini and M. Valacchi ... 1205

8.2.8 Product Subclass 8: Sodium Acetylides
A. Mordini and M. Valacchi ... 1209

8.2.9 Product Subclass 9: Allylsodium Compounds
A. Mordini and M. Valacchi ... 1215

8.2.10 Product Subclass 10: Arylsodium Compounds and Sodium Cyclopentadienide
A. Mordini and M. Valacchi ... 1221

8.2.11 Product Subclass 11: Benzylsodium Compounds
A. Mordini and M. Valacchi ... 1227
8.2.12 Product Subclass 12: 1,1-Disubstituted Organosodium Compounds
R. Łazny ... 1231

8.2.13 Product Subclass 13: 1-Monosubstituted Organosodium Compounds
R. Łazny ... 1241

8.2.14 Product Subclass 14: α-Sodiocarboxylic Acids and Related Sodium Compounds
E. Juaristi, O. Muñoz-Muñiz, and R. Melgar-Fernández 1259

8.2.15 Product Subclass 15: α-Sodio Aldehydes, α-Sodio Ketones, and Related Compounds
E. Juaristi and R. Melgar-Fernández 1285

8.3 Product Class 3: Potassium Compounds
M. J. White .. 1297

8.3.1 Product Subclass 1: Potassium Metal
P. Venturello and M. Barbero ... 1299

8.3.2 Product Subclass 2: Potassium Hydride
P. Venturello and M. Barbero ... 1315

8.3.3 Product Subclass 3: Potassium Halides, Potassium Cyanide, and Potassium Carbonate
J. V. Comasseto, R. L. O. R. Cunha, and C. C. Silveira 1345

8.3.4 Product Subclass 4: Potassium Hydroxide and Potassium Alkoxides
P. Venturello and M. Barbero ... 1361

8.3.5 Product Subclass 5: Potassium–Sulfur, –Selenium, and –Tellurium Compounds
J. V. Comasseto, R. L. O. R. Cunha, and C. C. Silveira 1387

8.3.6 Product Subclass 6: Potassium Amides and Phosphides
P. Venturello and M. Barbero ... 1399

8.3.7 Product Subclass 7: Organometallic Compounds of Potassium
A. Mordini and M. Valacchi ... 1437

8.4 Product Class 4: Rubidium and Cesium Compounds
A. Streitwieser ... 1475

8.4.1 Product Subclass 1: Rubidium and Cesium Metals
A. Streitwieser and F. Hasanayn ... 1477

8.4.2 Product Subclass 2: Rubidium and Cesium Halides
R. M. Kellogg ... 1485