National Institute of Allergy and Infectious Diseases, NIH

Volume 3

Intramural Research
Infectious Disease

Vassil St. Georgiev

For further volumes, go to
www.springer.com/series/7646
National Institute of Allergy and Infectious Diseases, NIH

Volume 3

Intramural Research

Edited by
Vassil St. Georgiev, PhD
Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD

Foreword by
Kathryn C. Zoon, PhD
Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD

Humana Press
The huge biomedical research enterprise that today is the National Institutes of Health traces its roots to 1887 and a small bacteriology lab on Staten Island. As they had been for centuries, infectious diseases were still the scourge of public health, and this lab marked the federal government’s first efforts to study contagious diseases, hygiene, and public health. By the end of the 1930s, the lab had become the National Institute of Health and had relocated about 10 miles from the White House to Bethesda, Maryland. Since then, NIH has grown and been shaped by new health threats and new opportunities to address them. Today, NIH’s 27 institutes, organized around threats (infections, cancer), opportunities (genomics), and anatomy (heart, lung, blood) conduct and support research in every area of biomedicine. In addition to Bethesda, many of these institutes have government laboratories in other regions of the USA and around the world.

These volumes represent the work of investigators in one of NIH’s largest institutes, the National Institute of Allergy and Infectious Diseases (NIAID). As the infectious diseases institute, we claim that very first NIH lab as our own. Dr. Joseph Kinyoun directed the lab, then called the Hygienic Laboratory, from 1887 to 1899. His research in bacteriology was the cornerstone for the NIAID programs today.

While the vast majority of NIAID’s funding is used to support extramural research, approximately 10% of the budget supports NIAID’s own scientists, the heirs of Dr. Kinyoun and so many others whose research informs our work today. Today NIAID’s intramural researchers conduct basic, translational, and clinical research covering a broad spectrum of immunology, allergy, and infectious diseases. Many NIAID researchers study the causative agents, vectors, and pathogenesis of infectious diseases in human and animal hosts. Our immunologists’ interests range from the basic mechanisms of immune cell signaling to antigen processing and vaccine development. NIAID clinician-researchers study AIDS, primary immune deficiencies, asthma and allergy, and many other diseases.

The accomplishments of NIAID researchers are numerous. For example, they discovered the Lyme disease bacterium, the Norwalk virus responsible for epidemic gastrointestinal disease, and the immunoregulatory cytokine, IL-4. They developed vaccines for hepatitis A and E and rotavirus, and are currently conducting more than 20 vaccine clinical trials. They defined the autoimmune lymphoproliferative syndrome and discovered its underlying genetic basis, discovered the mutations responsible for Job’s syndrome, and developed therapeutic strategies for severe combined immunodeficiency and chronic granulomatous disease. And for 25 years, NIAID researchers have made many important discoveries that have elucidated the pathogenesis of AIDS.

Over the years, NIAID scientists have increasingly focused on research that takes advantage of the special attributes of the NIH intramural program. Most important among these is the stable, long-term funding that allows us to tackle the most difficult problems—for example, how to eradicate HIV from the body, safely deliver a therapeutic gene, or develop a malaria vaccine.

I am honored to lead the men and women whose work is represented here. And I know that the intractable problems of today will yield to their discoveries of tomorrow.

June 19, 2009

Kathryn C. Zoon
Director, NAID Division of International Research

Foreword
Contents

Part I Microbiology: Virology

1 The Evolution of Gammaretrovirus Restriction Factors in the Mouse 3
 Christine A. Kozak

2 Herpesvirus Research at the National Institute of Allergy and Infectious Diseases: Thirty Years of Progress... 13
 Jeffrey I. Cohen

3 Why Study Mouse Retroviruses? .. 27
 Kim J. Hasenkrug

4 Functions of the Rotavirus RNA Polymerase in Virus Replication 31
 Kristen M. Guglielmi and John T. Patton

5 Human T-Cell Leukemia Virus Type 1, Cellular Transformation, and Adult T-Cell Leukemia... 41
 Junichiro Yasunaga and Kuan-Teh Jeang

Part II Microbiology: Human Immunodeficiency Virus (HIV)

6 Roles for Chemokine Receptors in HIV Pathogenesis... 53
 Philip M. Murphy

7 HIV-1 Accessory Proteins: Crucial Elements for Virus-Host Interactions 59
 Klaus Strebel

Part III Microbiology: Bacteriology

8 Exploring the Cause of Human Q Fever: Recent Advances in Coxiella burnetii Research... 75
 Anders Omsland, Stacey D. Gilk, Jeffrey G. Shannon, Paul A. Beare,
 Daniel E. Voth, Dale Howe, Diane C. Cockrell, and Robert A. Heinzen

9 Plague in the 21st Century: Global Public Health Challenges and Goals 87
 B. Joseph Hinnebusch

10 Molecular Biology of Staphylococcal Pathogenesis .. 95
 Michael Otto

11 Investigations of Relapsing Fever at Home and Abroad.................................. 101
 Tom G. Schwan
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Molecular Sleuthing with the Lyme Disease Agent</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Patricia A. Rosa</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Modeling of Acute Respiratory Melioidosis and Glanders</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Jonathan M. Warawa and Frank C. Gherardini</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part IV Microbiology: Mycology</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cryptococcosis: From Discovering the Natural Reservoir of its Etiology</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>to the Genetic Manipulation of Cryptococcus neoformans: Milestones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in Cryptococcal Research by Intramural Investigators at NIAID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K.J. Kwon-Chung and John E. Bennett</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part V Microbiology: Parasitology</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lessons from Parasites on CD4+ T-Cell Subset Differentiation and</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alan Sher and Dragana Jankovic</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Molecular Aspects of Parasite – Vector Interactions In Leishmaniasis</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>David Sacks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VI Microbiology: Malaria</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Mosquito Strategies Against Plasmodium: A Tale of Restrained Response</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>and Immune Evasion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carolina V. Barillas-Mury</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>The Plasmodial Surface Anion Channel: A Model Microbial Ion Channel</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>and Target for Antimalarial Drug Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanjay A. Desai</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Genomics and Genetics of Drug Resistance and Regulation of Malaria</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Parasite Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xin-zhuan Su</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VII Immunology: Cellular Immunology</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Modulation of Human Dendritic Cells by Highly Virulent Pathogens</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Catharine M. Bosio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Get Together and How They Conduct Their Business as Revealed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by Intravital Imaging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ronald N. Germain, Marc Bajénoff, Flora Castellino, Marcello Chieppa,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jackson G. Egen, Alex Y.C. Huang, Masaru Ishii, Lily Y. Koo, and Hai Qi</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Role of Regulatory/Suppressor T Cells in Immune Responses</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Ethan M. Shevach</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Proliferation versus Contraction of Immune Cells, the Non-Apoptotic</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Role of Caspase 8 In Immune Homeostasis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lixin Zheng and Michael Lenardo</td>
<td></td>
</tr>
</tbody>
</table>
24 Features of Plasma Cell-Related Neoplasms in Mice 221
 Herbert C. Morse III, Siegfried Janz, Chen-Feng Qi, Dong-Mi Shin,
 Wendy F. Davidson, Hongsheng Wang, Zhaoyang Li, Derry C. Roopenian,
 Janet W. Hartley, Torgny N. Fredrickson, Alexander Kovalchuk,
 and Michael Potter

25 A Role of IRF8 in Transcriptional Control of B-Cell Development 231
 Hongsheng Wang, Chang Hoon Lee, and Herbert C. Morse III

26 Laboratory of Molecular Immunology:
 Chemokines in Lymphocyte Biology ... 243
 Joshua M. Farber

Part VIII Immunology: The Role of Receptors

27 Structure and Function of Immunoreceptors 251
 Peter D. Sun

28 Role of the NKG2D Receptor in Health and Disease 261
 Steven J. Burgess, Sriram Narayanan, Francisco Borrego, and John E. Coligan

Part IX Allergy

29 G-Protein-Evoked Signaling Mechanisms in Asthma
 and Allergic Disease .. 277
 Kirk M. Druey

30 Mast Cell Precursors and Signaling Pathways 283
 Dean D. Metcalfe, Richard D. Peavy, and Alasdair M. Gilfillan

Part X Clinical Medicine: Infectious Diseases

31 Prion Biochemistry and Therapeutics ... 299
 Byron Caughey, Valerie L. Sim, Lara M. Taubner, Jason M. Wilham,
 Christina D. Orrú, Leah B. Christensen, Kelly L. Barton, Gregory J. Raymond,
 Lynne D. Raymond, and Andrew G. Hughson

32 Neutrophils in the Resolution of Infection 305
 Frank R. DeLeo

33 Reactive Oxidant-Dependent Innate Immune Defenses of the
 Airway Epithelium: The Dual Oxidase-Lactoperoxidase-
 Thiocyanate System ... 311
 Thomas L. Leto and Balázs Rada

34 Chronic Granulomatous Disease: From Lethal Pediatric
 Mystery to Complex Chronic Disease .. 319
 Kol A. Zarember, Benjamin P. Soule, and John I. Gallin

35 Pneumonia Virus of Mice (PVM): Exploring Novel Therapeutic
 Options In a Severe Respiratory Disease Model 353
 Helene F. Rosenberg and Joseph B. Domachowske

36 The 1918 Influenza Pandemic: Pathology and Pathogenesis 361
 John C. Kash and Jeffery K. Taubenberger
Part XI Clinical Medicine: Autoimmune Diseases

37 Mind Your Xs and Ys: Genetics of the Autoimmune Disease Systemic Lupus Erythematosus ... 371
Steve P. Crampton and Silvia Bolland

38 A Bench-to-Bedside Trail of Research Leading to the Understanding and Treatment of Ulcerative Colitis .. 377
Warren Strober and Ivan Fuss

Part XII Clinical Medicine: Vaccines

39 Structural Biology and the Design of Effective Vaccines for HIV-1 and Other Viruses .. 387
Peter D. Kwong, Gary J. Nabel, Priyamvada Acharya, Jeffrey C. Boyington, Lei Chen, Chantelle Hood, Albert Kim, Leopold Kong, Young Do Kwon, Shahzad Majeed, Jason McLellan, Gilad Ofek, Marie Pancera, Mallika Sastry, Anita Changela, Jonathan Stuckey, and Tongqing Zhou

40 How Do You Say “B-Cell Biology” In “Vaccinology”: Translational Research In the NIAID ... 403
Susan K. Pierce

41 Malaria Vaccine Development ... 409
Yimin Wu, Ruth Ellis, Kazutoyo Miura, David Narum, and Louis H. Miller

42 The Development of Live-Attenuated Vaccines for Pandemic Influenza 423
Catherine J. Luke and Kanta Subbarao

43 Targeting the Messenger: Vector-Based Vaccines to Control Leishmania Infection and Transmission ... 431
Jesus G. Valenzuela

Index ... 437
Contributors

Priyamvada Acharya
Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Marc Bajénoff
INSERM U344, IPMC, CNRS, Université de Nice-Sophia-Antipolis. Valbonne, France

Carolina Barillas-Mury
Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Kelly L. Barton
TSE/prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Paul A. Beare
Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

John E. Bennett
Clinical Mycology Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Silvia Bolland
Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Francisco Borrego
Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, CDER/FDA, Bethesda, MD, USA

Catharine M. Bosio
Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Jeffrey C. Boyington
Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Steven J. Burgess
Pfizer Global Research and Development, Sandwich, Kent, United Kingdom, CT13 9NJ
Flora Castellino
Research Center, Novartis Vaccines and Diagnostics, Via Fiorentina 1, Siena, Italy

Lei Chen
Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Byron Caughey
TSE/prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Marcello Chieppa
Laboratory of Immunology, Lymphocyte Biology Section, Program in Systems Immunology and Infectious Disease Modeling, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Leah B. Christensen
TSE/prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Diane C. Cockrell
Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Jeffrey I. Cohen
Medical Virology Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

John E. Coligan
Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, National Institutes of Health, NIH, Rockville, MD, USA

Steve P. Crampton
Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Wendy F. Davidson
Immunology Review Branch, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Frank R. Deleo
Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Sanjay A. Desai
Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA

Joseph B. Domachowske
Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, USA

Kirk M. Druey
Molecular Signal Transduction Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
Jackson G. Egen
Laboratory of Immunology, Lymphocyte Biology Section, Program in Systems Immunology and Infectious Disease Modeling, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Ruth Ellis
Malaria Vaccine Development Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Joshua M. Farber
Inflammation Biology Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Torgny N. Fredrickson
Laboratory of Immunopathology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Ivan Fuss
Mucosal Immunity Section, Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

John I. Gallin
Director, Clinical Center, National Institutes of Health, Bethesda, MD, USA

Vassil St. Georgiev
Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA

Ronald N. Germain
Laboratory of Immunology, Lymphocyte Biology Section, Program in Systems Immunology and Infectious Disease Modeling, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

Frank C. Gherardini
Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Alasdair M. Gilfillan
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, NIH, Bethesda, MD, USA

Stacey D. Gilk
Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA

Kristen M. Guglielmi
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.

Janet W. Hartley
Laboratory of Immunopathology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA

Kim J. Hasenkrug
Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA