Cardio-Respiratory Control in Vertebrates
Cardio-Respiratory Control in Vertebrates

Comparative and Evolutionary Aspects
Hopefully, this book will be taken off of the shelf frequently to be studied carefully over many years. More than 40 researchers were involved in this project, which examines respiration, circulation, and metabolism from fish to the land vertebrates, including human beings. A breathable and stable atmosphere first appeared about 500 million years ago. Oxygen levels are not stable in aquatic environments and exclusively water-breathing fish must still cope with the ever-changing levels of O_2 and with large temperature changes. This is reflected in their sophisticated countercurrent systems, with high O_2 extraction and internal and external O_2 receptors.

The conquest for the terrestrial environment took place in the late Devonian period (355–359 million years ago), and recent discoveries portray the gradual transitional evolution of land vertebrates. The oxygen-rich and relatively stable atmospheric conditions implied that oxygen-sensing mechanisms were relatively simple and low-gain compared with acid–base regulation. Recently, physiology has expanded into related fields such as biochemistry, molecular biology, morphology and anatomy. In the light of the work in these fields, the introduction of DNA-based cladograms, which can be used to evaluate the likelihood of land vertebrates and lungfish as a sister group, could explain why their cardio-respiratory control systems are similar. The diffusing capacity of a duck lung is 40 times higher than that of a toad or lungfish. Certainly, some animals have evolved to rich high-performance levels.

June 2009

M.L. Glass

S.C. Wood
Contents

Overview of the Respiratory System ... 1
S.C. Wood

Part I Control of Respiration in Aquatic Vertebrates

Gas Transport and Gill Function in Water-Breathing Fish 5
S.F. Perry, A. Esbaugh, M. Braun, and K.M. Gilmour

Patterns of Acid–Base Regulation During Exposure to Hypercarbia in Fishes .. 43
C.J. Brauner and D.W. Baker

Buoyancy Control in Aquatic Vertebrates 65
B. Pelster

Gas Exchange and Control of Respiration in Air-Breathing Teleost Fish 99
M.L. Glass and F.T. Rantin

Effects of Temperature on Cardiac Function in Teleost Fish 121
A.L. Kalinin, M.J. Costa, F.T. Rantin, and M.L. Glass

Physiological Evidence Indicates Lungfish as a Sister Group to the Land Vertebrates 161
M.L. Glass

Aestivation in Amphibians, Reptiles, and Lungfish 179
M.L. Glass, J. Amin-Naves, and G.S.F. da Silva

Part II Evolution of Pulmonary Mechanics and Respiratory Control

Trade-offs in the Evolution of the Respiratory Apparatus of Chordates . 193
S.F. Perry, W. Klein, and J.R. Codd
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Selection Pressures Shaping the Pulmonary Surfactant</td>
<td>205</td>
</tr>
<tr>
<td>System of Adult and Developing Lungs</td>
<td></td>
</tr>
<tr>
<td>S. Orgeig and C.B. Daniels</td>
<td></td>
</tr>
<tr>
<td>Midbrain Structures and Control of Ventilation in Amphibians</td>
<td>241</td>
</tr>
<tr>
<td>L.H. Gargaglioni and L.G.S. Branco</td>
<td></td>
</tr>
<tr>
<td>Comparative Aspects of Hypoxia Tolerance of the Ectothermic</td>
<td>263</td>
</tr>
<tr>
<td>Vertebrate Heart</td>
<td></td>
</tr>
<tr>
<td>H. Gesser and J. Overgaard</td>
<td></td>
</tr>
<tr>
<td>Control of the Heart and of Cardiorespiratory Interactions</td>
<td>285</td>
</tr>
<tr>
<td>in Ectothermic Vertebrates</td>
<td></td>
</tr>
<tr>
<td>E.W. Taylor and T. Wang</td>
<td></td>
</tr>
<tr>
<td>The Endocrine–Paracrine Control of the Cardiovascular System</td>
<td>317</td>
</tr>
<tr>
<td>B. Tota and M.C. Cerra</td>
<td></td>
</tr>
<tr>
<td>Stoking the Brightest Fires of Life Among Vertebrates</td>
<td>381</td>
</tr>
<tr>
<td>Raul K. Suarez and Kenneth C. Welch</td>
<td></td>
</tr>
<tr>
<td>Part III Respiratory Physiology of Birds: Metabolic Control</td>
<td></td>
</tr>
<tr>
<td>Prenatal Development of Cardiovascular Regulation in Avian Species</td>
<td>397</td>
</tr>
<tr>
<td>J. Altimiras, D.A. Crossley II, and E. Villamor</td>
<td></td>
</tr>
<tr>
<td>Control of Breathing in Birds: Implications for High-Altitude Flight</td>
<td>429</td>
</tr>
<tr>
<td>G.R. Scott and W.K. Milsom</td>
<td></td>
</tr>
<tr>
<td>Part IV Mammalian and Human Physiology</td>
<td></td>
</tr>
<tr>
<td>Peripheral Chemoreceptors in Mammals: Structure, Function</td>
<td>451</td>
</tr>
<tr>
<td>and Transduction</td>
<td></td>
</tr>
<tr>
<td>P. Kumar</td>
<td></td>
</tr>
<tr>
<td>Central Chemosensitivity in Mammals</td>
<td>475</td>
</tr>
<tr>
<td>L.K. Hartzler and R.W. Putnam</td>
<td></td>
</tr>
<tr>
<td>Human Exercise Physiology</td>
<td>501</td>
</tr>
<tr>
<td>S. Volianitis and Niels H. Secher</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>539</td>
</tr>
</tbody>
</table>
Contributors

J. Altimiras
Biology Section, Department of Physics, Chemistry and Biology, University of Linköping, SE-58183 Linköping, Sweden, jordi@ifm.liu.se

J. Amin-Naves
Department of Physiology, Faculty of Medicine, FMRP/USP, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil

D.W. Baker
Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada

L.S.G. Branco
Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil, branco@forp.usp.br

M. Braun
Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 Canada

C.J. Brauner
Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada, brauner@zoology.ubc.ca

M.C. Cerra
Professor of General Physiology, Laboratory of Cardiovascular Physiology, Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy

J.R. Codd
Faculty of Life Sciences, University of Manchester, Manchester, UK
Contributors

M.J. Costa
Federal University of São Carlos, Department of Physiological Sciences 13565-905 São Carlos, SP, Brazil

D.A. Crossley II
Portland State University, Portland, OR, USA

G.S.F. da Silva
Department of Physiology, Faculty of Medicine, FMRP/USP, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil

C.B. Daniels
School of Natural and Built Environments, 2BJ-17 City East Campus, University of South Australia, Adelaide SA 5001, Australia, chris.daniels@unisa.edu.au

A. Esbaugh
Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 Canada

L.H. Gargaglioni
Department of Animal Morphology and Physiology, State University of São Paulo FCAV at Jouboticabal, SP, Brazil, lucihel@fcav.unesp.br

H. Gesser
Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark, Hans.gesser@biology.au.dk

K.M. Gilmour
Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada

M.L. Glass
Department of Physiology, Faculty of Medicine FMRP/USP, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil, mlglass@rfi.fmrp.usp.br

L.K. Hartzler
Department Neuroscience, Cell Biology and Physiology, Wright State University Boonhoff School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA, Lynn.hartzler@wright.edu

A.L. Kalinin
Department of Physiological Sciences, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil, akalinin@power.ufscar.br

W. Klein
Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brazil, klein@ufba.br

P. Kumar
Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, UK, p.kumar@b.ham.ac.uk
W.K. Milsom
Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

J. Overgaard
Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark,
Johannes.overgaard@biology.au.dk

S. Orgeig
Sansom Institute, School of Pharmacology & Medical Sciences, University of South Australia, R6-18 City East Campus, Adelaide, SA 5001 Australia,
sandra.orgeig@unisa.edu.au

B. Pelster
Institut für Zoologie, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria, Bernd.Pelster@uibk.ac

S.F. Perry
Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 Canada, sfperry@science.ottawa.ca
and
Institut für Zoologie, Rheinische Friedrich-Wilhelm-Universität Bonn, Universitat Bonn, Poppelsdorfer Schloss, 53121 Bonn, Germany, perry{._}steven@web.de

R.W. Putnam
Department Neuroscience, Cell Biology and Physiology, Wright State University Boonhoff School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA, Robert.putnam@wright.edu

F.T. Rantin
Department of Physiological Sciences, Federal University of São Carlos, Via Washington Luiz, km 235, 13565-905 São Carlos, SP, Brazil, ftrantin@power.ufscar.br

G.R. Scott
Department of Zoology, University of British Columbia, Vancouver BC, Canada
VT 1Z4, scott@zoology.ubc.ca

N.H. Secher
Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

R.K. Suarez
Department of Ecology, Evolution & Evolution Biology, University of California, Santa Barbara, CA 93106-9610, USA, suarez@lifesci.uesb.edu

E.W. Taylor
School of Biociences, University of Birmingham, Birmingham B15 2TT, UK,
e.d.taylor@bham.ac.uk
B. Tota
Professor of General Physiology, Laboratory of Cardiovascular Physiology,
Department of Cell Biology, University of Calabria, 87030 Arcavacata di Rende,
CS, Italia, tota@unicalit

E. Villamor
University of Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands

S. Volianitis
Department of Health and Technology, Aalborg University, Aalborg, Denmark,
stefanos.volianitis@excite.com

T. Wang
Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus,
Denmark, Tobias.wang@biological.au.dk

K. Welch
Department of Ecology, Evolution & Evolution Biology, University of California,
Santa Barbara, CA 93106-9610, USA

S.C. Wood
Department of Physiology, Ross University School of Medicine,
University of Medicine and Health Sciences, St. Kitts, Leeward Islands,
wwood@umhs-sk-physiology.org
Overview of the Respiratory System

S.C. Wood

This monograph comprises a diverse collection of chapters dealing with gas exchange, circulation, and metabolism in species ranging from fish to man. As you read the chapters, the unifying theme that emerges is one that was proposed 18 years ago by Weibel et al. (1991), i.e., the hypothesis of symorphism.

The concept that animals, and humans as well, should be designed economically (i.e., that structural design should be matched to functional demand) follows from common sense, but it is also supported by many observations.

The respiratory system is often depicted as four processes; ventilation, diffusion to blood, circulation, and diffusion to cells that are arranged in series. This series arrangement means that the total resistance to gas transport is the sum of the four resistances and that any of the steps can be rate-limiting. Many authors liken this system to an “oxygen cascade”, referring to the progressive drop in PO$_2$ that occurs at each step of transport. Kuper and Soni (2003) have likened oxygen transport to a whirlpool instead of a cascade. They pointed out that mitochondria “suck” oxygen out of cells, generating an oxygen flux to meet the demand. The drop in PO$_2$ between arterial blood and venous blood leaving tissues depends on the O$_2$ content removed from the blood. The venous PO$_2$ is then a dependent variable of venous O$_2$ content and, due to the shape of the PO$_2$ = f(venous [O$_2$]) curve, is held at fairly constant value over a wide range of venous O$_2$ contents.

For a given species, each of the four steps in the oxygen cascade (or whirlpool) is adaptable to changes in demand for oxygen uptake and carbon dioxide output. The passive steps of diffusion to blood and diffusion to cells can increase acutely with increased surface areas due to recruitment and distension of capillaries, and can increase chronically with increased capillary density, increased mitochondrial density and increased oxidative enzyme activity (Andersen 1975; Holloszy and Booth 1976). Likewise, the active step of circulation can increase acutely by increasing heart rate and stroke volume, and chronically by increasing maximum stroke volume. This step also includes O$_2$ transport properties of hemoglobin, which show adaptive changes both acutely and chronically. The other active step, ventilation, shows the same capacity to increase frequency and tidal volume acutely, but does not normally show responses to chronic increases in O$_2$ demand (Ekblom 1969). When different species or animal groups are compared, the same pattern of adaptation

S.C. Wood
University of New Mexico School of Medicine, Albuquerque, NM 87131, USA,
E-mail: swood@mountain-research.org
emerges as structure is matched quite closely with differences in oxygen demand. An additional variable is now important, i.e., genetic differences.

An alternate approach to examining plasticity of the oxygen transport system is to focus on diminished oxygen supply, i.e., hypoxia. For healthy individuals, this normally becomes a problem only at high altitude. The adaptations of animals to acute and chronic exposure to hypoxia differ somewhat from the adaptations to exercise. For example, a key aspect of adaptation to hypoxia is increased ventilation. Unlike exercise, where the ventilation increases to match increased CO$_2$ production, the hypoxia-induced increase in ventilation is not related to increased CO$_2$ production and is, in fact, hyperventilation. Without this hyperventilation, the tolerance to hypoxia would be greatly diminished. Perhaps the clearest example of this is man on the summit of Mt. Everest. Alveolar PCO$_2$, normally kept at about 40 mmHg at sea level, is reduced by hyperventilation to about 7 mmHg (West et al. 1983). With this hyperventilation, alveolar PO$_2$ on the summit was about 35 mmHg. Without this hyperventilation, alveolar PO$_2$ would have been only about 2 mmHg. The downside of this acute response to hypoxia is a pronounced respiratory alkalosis, a condition with medical risks of cerebral and coronary vasoconstriction and cardiac arrhythmias. A chronic response to hypoxia is stimulation of red blood cell production, leading to increased O$_2$-carrying capacity. The downside of this chronic response is increased blood viscosity and in some natives to altitude, chronic mountain sickness or Monge’s disease (Monge-Medrano et al. 1928).

For many species, coping with hypoxia elicits the interesting and effective strategy of hypothermia, which reduces oxygen demand by roughly 11% per degree centigrade (Wood 1991). The mechanism in mammals and birds is disruption of the normal thermogenesis responses to lower body temperature. In ectothermic species, the mechanism is behavioral, i.e., seeking out cooler ambient temperatures. The downside of this response is loss of normal fight or flight speed or, more dramatically, becoming a popsicle by seeking a freezing temperature.

References

Part I

Control of Respiration in Aquatic Vertebrates
Abstract This review focuses on four areas of fish gill function: oxygen transport and transfer, carbon dioxide transport and transfer, oxygen and carbon dioxide sensing, and ammonia excretion. Each section presents a synthesis of previous work while also highlighting recent and ongoing studies that are shaping the growth of these research fields. Where possible, we will comment on the utility of using emerging technologies, including gene knockdown in zebrafish, to evaluate the function of the fish gill.

1 Introduction

Is another review chapter on gas transport across fish gills really necessary? We asked ourselves the same question before taking on this task, and decided to try and determine what impact previous scholarly reviews of fish respiration were having in educating the public at large. A quick Google search using the key words ‘fish AND gill’ produced 319,000 hits (about half the number of hits obtained by Googling ‘rat AND lung’). The very first hit (arguably the most popular) directed us to a site about respiration in fish where we learned that ‘fish breathe by drinking’… Clearly, there is still work to be done! Here, we try to address this need while avoiding competition with other recent reviews, notably the ambitious and comprehensive tome on fish gills by Evans et al. (2005), which has soared to Google hit number 12 of 319,000 in only 3 years. For a wealth of detail on the structure and function of the fish gill, we urge the reader to consult Evans et al. (2005). In this review, we have focused on four areas of gill function: oxygen transport and transfer, carbon dioxide transport and transfer, oxygen and carbon dioxide sensing, and ammonia excretion.

S.F. Perry (✉)
Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 Canada,
E-mail: sfperry@uottawa.ca