Springer Series in Translational Stroke Research

Series Editor
John Zhang

For further volumes:
http://www.springer.com/series/10064
Vascular Mechanisms in CNS Trauma
Recognizing that the modern history of the study of traumatic brain and spinal cord injury has spanned less than 50 years, it is not surprising that our current understanding of the pathobiology and treatment of these devastating neurological disorders remains incomplete and in some cases, controversial. When first addressed in the early 1970s, the focus of neurotrauma research took a distinct vascular focus, with many believing that the most important mechanism underlying the morbidity associated with CNS injury was the occurrence of traumatically induced vasogenic edema. It was assumed that the mechanical forces of injury disrupted the blood–brain barrier leading to the extravasation of serum proteins and other damaging agents capable of recruiting increased water within the central nervous system thereby elevating intra-parenchymal/intracranial pressure. Further, it was assumed that this elevated pressure alone triggered all the damaging cascades of injury associated with tissue compression and subsequent CNS tissue damage. Others suggested that the same forces of injury altered vascular function leading to impaired autoregulation and/or impaired vasoreactivity to normal physiological challenges, predisposing the CNS to further injury when a secondary insult, such as hypoxia or hypotension ensued. This early vascular focus was solidified by the recognition that the same forces of injury, particularly those on the more severe end of the spectrum, invariably caused overt vascular damage reflected in local spinal cord hemorrhage followed by tissue cavitation or the occurrence of hemorrhagic contusional change within the cerebral cortex. In part, because of the failure of early clinical trials targeting vascular mechanisms to achieve therapeutic benefit and in part, due to the frustration of some over this vascular-dominated approach to neurotrauma research, the subsequent 2–3 decades of neurotrauma discovery took a decidedly neuronal centric focus. During this period, there was a dramatic shift in neurotrauma research to the considerations of altered neurotransmission/neuroexcitation, neuronal cell death framed in the context of apoptosis versus necrosis, axonal dysfunction and disconnection, and the sequelae of such disconnection in terms of CNS tissue deafferentation and neuroplastic change. These neuronal focused studies were interfaced with parallel metabolic, behavioral, and targeted therapeutic studies conducted both in animals and humans who had
sustained traumatic injury to either the brain or spinal cord. Unfortunately, as appreciated by all, this period of discovery, although highly significant, also failed to generate a full understanding of the pathobiology of CNS injury and/or lead to the development of more rational therapeutic approaches to improve outcome in those who have sustained traumatic injury to either the brain or spinal cord. In light of these limitations and clinical trial failures, the last decade has witnessed a more integrative approach, coupling the interaction of the CNS and its intrinsic vasculature, to better understand the overall pathogenesis of CNS injury and its potential therapeutic targeting. Now framed in the context of the neurovascular unit, contemporary research has begun to focus on the cell-specific responses therein while also exploring the various complex interactions between these neuronal vascular and their related glial pathways. In this context, renewed emphasis has been placed on the understanding of the blood–brain/blood-spinal cord barrier, not only in terms of its alteration following traumatic insult but also in the context of its ability to modulate nutrient transport as well as the passage of various purported neuroprotective agents.

Against this backdrop of discovery, the current text edited by Lo and colleagues frames our contemporary understanding of the vascular sequelae of traumatic injury to the CNS in an effort to achieve a more comprehensive understanding of CNS/neuronal responses to injury. The 29 chapters contained therein provide important insight into the complex and diverse vascular changes associated with traumatic CNS injury, with a good mix of both basic science and clinical discovery. The authors who have participated in the generation of this book provide detailed insight into virtually all of the important components of the vascular sequelae of injury and their CNS/neuronal interactions. The chapters in this text focus on important themes considering traumatically altered cerebral blood flow, autoregulation, vasoreactivity, coagulation, and blood–brain barrier status, while also addressing the importance of the neuronal/glial vascular unit. These studies are complemented by parallel considerations of more contemporary diagnostic and therapeutic approaches ranging from the use of proteomics and advanced imaging to the modern tools of electrophysiology and microdialysis-based assessment.

Collectively, the editors and authors are to be congratulated on their success in producing this important text. It will serve as an invaluable reference for those first entering the field as well as the seasoned investigator who wishes to update his or her understanding of the complex vascular sequelae associated with traumatic injury to the central nervous system.

Richmond, VA

John T. Povlishock, PhD
Preface

The vasculature of the central nervous system performs the vital tasks of perfusing the brain and spinal cord, and maintaining barrier functions that ensure a proper environment for neuronal activity. Additionally, the vasculature participates in other key functions, including the production of vasoconstricting and vasodilating substances, the provision of trophic support to the neuronal and glial parenchyma, the response to inflammatory stimuli, and the regulation of tissue remodeling and repair after injury. Hence, a rigorous understanding of vascular mechanisms is essential for the development of therapeutic strategies for brain and spinal cord trauma.

It is now an opportune time to incorporate the study of the vasculature in the field of CNS trauma science. Our hope in putting together this book is to provide a reference for clinicians and researchers who are undertaking further explorations of the CNS vasculature within the complex pathophysiology of injury and disease. We dedicate this book to investigators who are studying ways to treat patients and to improve the lives of survivors of brain and spinal cord trauma. And most importantly, we thank the many patients and families whose efforts to reclaim their lives after CNS trauma provide the inspiration for our work.

Boston, MA
Eng H. Lo
Josephine Lok
MingMing Ning
Michael J. Whalen
Contents

Part I Molecular Mechanisms

1 CNS Barriers in Neurotrauma 3
 Adam Chodobski, Brian J. Zink, and Joanna Szmydynger-Chodobska

2 Mechanisms of Cerebral Edema Leading to Early Seizures
 After Traumatic Brain Injury 29
 Philip H. Iffland II, Gerald A. Grant, and Damir Janigro

3 Human Cerebral Blood Flow and Traumatic Brain Injury 47
 David A. Hovda and Thomas C. Glenn

4 Gliovascular Targets in Traumatic CNS Injury 55
 Arjun Khanna, Brian P. Walcott, Kristopher T. Kahle,
 Volodymyr Gerzanich, and J. Marc Simard

5 Neurovascular Responses to Traumatic Brain Injury 75
 Josephine Lok, Ken Arai, Shu-zhen Guo, Wendy Leung, Takakuni Maki,
 Deepti Navaratna, Klaus van Leyen, Changhong Xing, Limin Wu,
 Natan Noviski, and Eng H. Lo

6 The Effects of Intravascular Coagulation and Microthrombosis
 on Cerebral Perfusion After Brain Trauma 105
 Monisha A. Kumar, Douglas H. Smith, and Sherman C. Stein

7 Barriers to Drug Delivery for Brain Trauma 125
 F. Anthony Willyerd, Philip E. Empey, Patrick M. Kochanek,
 and Robert S.B. Clark

8 Angiogenesis and Functional Recovery After Traumatic
 Brain Injury .. 141
 Yanlu Zhang, Ye Xiong, Asim Mahmood, Zheng Gang Zhang,
 and Michael Chopp
9 Vascular Mechanisms in Spinal Cord Injury 157
Theo Hagg

10 Neurovascular Mechanisms of Ischemia Tolerance Against Brain Injury .. 179
Kunjjan R. Dave, John W. Thompson, Jake T. Neumann,
Miguel A. Perez-Pinzon, and Hung W. Lin

11 Stem Cells for Neurovascular Repair in CNS Trauma 201
Mibel M. Pabón, Travis Dailey, Naoki Tajiri, Kazutaka Shinozuka,
Hiroti Ishikawa, Sandra Acosta, Yuji Kaneko, and Cesar V. Borlongan

12 Vascular Actions of Hypothermia in Brain Trauma 223
W. Dalton Dietrich and Helen M. Bramlett

Part II Experimental Models and Methods

13 Vascular Responses in Rodent Models of Traumatic Brain Injury .. 239
Xiaoshu Wang, Zhanyang Yu, Zhengbu Liao, Qi Liu, MingMing Ning,
Xiaochuan Sun, Josephine Lok, Eng H. Lo, and Xiaoying Wang

14 SAH Models: Review, New Modification, and Prospective 255
Sheng Chen, Damon Klebe, Alexander Vakhmyanin, Mutsumi Fujii,
and John H. Zhang

15 Age and Sex Differences in Hemodynamics in a Large Animal Model of Brain Trauma 269
William M. Armstead and Monica S. Vavilala

16 Neutrophils as Determinants of Vascular Stability in the Injured Spinal Cord ... 285
Alpa Trivedi, Sang Mi Lee, Haoqian Zhang,
and Linda J. Noble-Haeusslein

17 Blood Biomarkers for Acute CNS Insults: Traumatic Brain Injury and Stroke .. 303
Olena Glushakova, Stefania Mondello, and Ronald L. Hayes

18 Biomaterials for CNS Injury ... 333
Teck Chuan Lim and Myron Spector

19 Isolated Blood Vessel Models for Studying Trauma 353
Eugene V. Golanov
Part III Clinical Challenges and Opportunities

20 Managing Edema and Intracranial Pressure in the Intensive Care Unit .. 363
Brian M. Cummings, Phoebe H. Yager, Sarah A. Murphy, Brian Kalish, Chetan Bhupali, Rebecca Bell, Zenab Mansoor, Natan Noviski, and Michael J. Whalen

21 Surgical Management of Traumatic Brain Edema 379
Takeshi Maeda, Tatsuro Kawamata, Atsuo Yoshino, and Yoichi Katayama

22 Optimizing Hemodynamics in the Clinical Setting 391
Jose Alberto Toranzo and Claudia S. Robertson

23 Cerebrovascular Autoregulation and Monitoring of Cerebrovascular Reactivity 401
Philip M. Lewis, Marek Czosnyka, Piotr Smielewski, and John D. Pickard

24 Cerebrovascular Responses After Pediatric Traumatic Brain Injury .. 421
Steven L. Shein, Nikki Miller Ferguson, and Michael J. Bell

25 Subdural Hematoma in Non-accidental Head Injury 433
Jennifer C. Munoz Pareja, Josephine Lok, Natan Noviski, and Ann-Christine Duhaime

26 Blood Genomics After Brain Ischemia, Hemorrhage, and Trauma ... 445
Da Zhi Liu, Glen C. Jickling, Boryana Stamova, Xinhua Zhan, Bradley P. Ander, and Frank R. Sharp

27 Molecular Biomarkers in Neurocritical Care: The Next Frontier ... 459
Sherry H.-Y. Chou, Eng H. Lo, and MingMing Ning

28 Bedside Monitoring of Vascular Mechanisms in CNS Trauma: The Use of Near-Infrared Spectroscopy (NIRS) and Transcranial Doppler (TCD) .. 473
Sarah A. Murphy, Brian M. Cummings, David A. Boas, and Natan Noviski

29 In Vivo MRI and MRS of Cerebrovascular Function Following Traumatic Brain Injury .. 489
Chandler Sours and Rao P. Gullapalli

Index ... 505
Contributors

Sandra Acosta Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA

Bradley P. Ander Department of Neurology and the MIND Institute, University of California at Davis, Sacramento, CA, USA

Ken Arai Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

William M. Armstead Departments of Anesthesiology and Critical Care and Pharmacology, University of Pennsylvania, Philadelphia, PA, USA

David A. Boas Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos. Center for Biomedical Imaging, Boston, MA, USA

Michael J. Bell Departments of Critical Care Medicine, Neurological Surgery, Pediatrics and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Rebecca Bell Department of Pediatrics, Division of Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Chetan Bhupali Department of Pediatrics, Division of Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Cesar V. Borlongan Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA

Helen M. Bramlett Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA